Predicting pKa in Implicit Solvents: Current Status and Future Directions*
Junming HoDepartment of Chemistry, Yale University, 225 Prospect Street, New Haven, CT 06520, USA, and Institute of High Performance Computing, Agency for Science, Technology and Research, 1 Fusionopolis Way, #16-16, Connexis, Singapore 138632. Email: junming.ho@yale.edu
Junming Ho is a graduate of the University of Western Australia and the Australian National University. In 2011, he completed his Ph.D. under the mentorship of Professors Michelle Coote and Christopher Easton, where he developed computational and experimental methods to study substituent effects on amide carbon acidity, and their associated applications in synthesis. He received the 2012 RSC Director's Prize and RACI Cornforth Medal for his doctoral research. During his post-doctoral work at ANU, he applied theory to solve mechanistic problems, and recently co-authored a book chapter in Organic Electrochemistry. He is presently a post-doctoral fellow at Yale University where he is working on biomolecular simulations. |
Australian Journal of Chemistry 67(10) 1441-1460 https://doi.org/10.1071/CH14040
Submitted: 27 January 2014 Accepted: 11 February 2014 Published: 22 April 2014
Abstract
Computational prediction of condensed phase acidity is a topic of much interest in the field today. We introduce the methods available for predicting gas phase acidity and pKas in aqueous and non-aqueous solvents including high-level electronic structure methods, empirical linear free energy relationships (LFERs), implicit solvent methods, explicit solvent statistical free energy methods, and hybrid implicit–explicit approaches. The focus of this paper is on implicit solvent methods, and we review recent developments including new electronic structure methods, cluster-continuum schemes for calculating ionic solvation free energies, as well as address issues relating to the choice of proton solvation free energy to use with implicit solvation models, and whether thermodynamic cycles are necessary for the computation of pKas. A comparison of the scope and accuracy of implicit solvent methods with ab initio molecular dynamics free energy methods is also presented. The present status of the theory and future directions are outlined.
References
[1] (a) Superbases for Organic Synthesis: Gaunidines, Amidines, Phosphazenes and Related Organocatalysts (Ed. T. Ishikawa) 2009 (John Wiley & Sons: New York, NY).(b) G. Gryn’ova, D. L. Marshall, S. J. Blanksby, M. L. Coote, Nat. Chem. 2013, 5, 474.
| Crossref | GoogleScholarGoogle Scholar |
(c) J. Ho, M. L. Coote, C. J. Easton, J. Org. Chem. 2011, 76, 5907.
| Crossref | GoogleScholarGoogle Scholar |
(d) P. D’Arrigo, D. Arosio, L. Cerioli, D. Moscatelli, S. Servi, F. Viani, D. Tessaro, Tetrahedron Asymmetr. 2011, 22, 851.
| Crossref | GoogleScholarGoogle Scholar |
(e) C. Yang, X.-S. Xue, J.-L. Jin, X. Li, J.-P. Cheng, J. Org. Chem. 2013, 78, 7076.
| Crossref | GoogleScholarGoogle Scholar |
[2] (a) A. Shokri, Y. Wang, G. A. O’Doherty, X.-B. Wang, S. R. Kass, J. Am. Chem. Soc. 2013, 135, 17919.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslaksLfL&md5=7d980b67e91c2efc83ce7d2d18bbdb76CAS | 24188017PubMed |
(b) A. Shokri, A. Abedin, A. Fattahi, S. R. Kass, J. Am. Chem. Soc. 2012, 134, 10646.
| Crossref | GoogleScholarGoogle Scholar |
(c) J. P. Richard, T. L. Amyes, Curr. Opin. Chem. Biol. 2001, 5, 626.
| Crossref | GoogleScholarGoogle Scholar |
(d) J. Ho, C. J. Easton, M. L. Coote, J. Am. Chem. Soc. 2010, 132, 5515.
| Crossref | GoogleScholarGoogle Scholar |
[3] M. E. Tanner, Acc. Chem. Res. 2002, 35, 237.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xit1Whurk%3D&md5=219d943277657399147d6c8b212ceadbCAS | 11955052PubMed |
[4] A. Rios, J. P. Richard, T. L. Amyes, J. Am. Chem. Soc. 2002, 124, 8251.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xks1arurg%3D&md5=9c704667633aea45bf6e37d3acff5fd1CAS | 12105903PubMed |
[5] (a) W.-Y. Tsang, B. M. Wood, F. Wong, W. Wu, J. A. Gerlt, T. L. Amyes, J. P. Richard, J. Am. Chem. Soc. 2012, 134, 14580.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVKgt7bJ&md5=91afa0c2c33ccfad89f27887c59a7511CAS | 22812629PubMed |
(b) J. Crugeiras, A. Rios, E. Riveros, J. P. Richard, J. Am. Chem. Soc. 2011, 133, 3173.
| Crossref | GoogleScholarGoogle Scholar |
(c) J. Crugeiras, A. Rios, E. Riveros, J. P. Richard, J. Am. Chem. Soc. 2009, 131, 15815.
| Crossref | GoogleScholarGoogle Scholar |
(d) J. Crugeiras, A. Rios, E. Riveiros, T. L. Amyes, J. P. Richard, J. Am. Chem. Soc. 2008, 130, 2041.
| Crossref | GoogleScholarGoogle Scholar |
[6] (a) S. M. Bachrach, J. Org. Chem. 2013, 78, 10909.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsFOju7fE&md5=202d976ba1425b3011d6a8d5277caf6dCAS | 24093442PubMed |
(b) S. M. Bachrach, Org. Lett. 2012, 14, 5598.
| Crossref | GoogleScholarGoogle Scholar |
[7] (a) A. Shokri, X.-B. Wang, S. R. Kass, J. Am. Chem. Soc. 2013, 135, 9525.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXoslSqtrg%3D&md5=51db65e1cef14e8719c291b6def69866CAS | 23725455PubMed |
(b) A. Shokri, X.-B. Wang, S. R. Kass, J. Am. Chem. Soc. 2012, 134, 16944.
| Crossref | GoogleScholarGoogle Scholar |
[8] (a) G. R. Grimsley, J. M. Scholtz, C. N. Pace, Protein Sci. 2009, 18, 247.
| 1:CAS:528:DC%2BD1MXmslCitbk%3D&md5=d02a3b4e7bcc2c107fc131274c86db54CAS | 19177368PubMed |
(b) P. Kukić, D. Farrell, C. R. Søndergaard, U. Bjarnadottir, J. Bradley, G. Pollastri, J. E. Nielsen, Proteins 2010, 78, 971.
| Crossref | GoogleScholarGoogle Scholar |
[9] (a) G. Cruciani, F. Milletti, L. Storchi, G. Sforna, L. Goracci, Chem. Biodivers. 2009, 6, 1812.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFSrtL%2FK&md5=7eb5c6092f08127b2ca9ba44db4e60daCAS | 19937818PubMed |
(b) D. T. Manallack, Perspect. Med. Chem. 2007, 1, 25.
[10] (a) G. M. Ullmann, E. Bombarda, Biol. Chem. 2013, 394, 611.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXlvFensLg%3D&md5=cc7ed2df5ec3907a8a942687051f813eCAS | 23362202PubMed |
(b) G. M. Ullmann, J. Phys. Chem. A 2003, 107, 1263.
[11] E. V. Anslyn, D. A. Dougherty, Modern Physical Organic Chemistry 2006 (University Science Books: Sausalito, CA).
[12] (a) G. Williams, E. P. Maziarz, T. L. Amyes, T. D. Wood, J. P. Richard, Biochemistry 2003, 42, 8354.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXks12nu7w%3D&md5=a62080a972549347948cc365e890dbcbCAS | 12846584PubMed |
(b) J. P. Richard, G. Williams, A. C. O’Donoghue, T. L. Amyes, J. Am. Chem. Soc. 2002, 124, 2957.
| Crossref | GoogleScholarGoogle Scholar |
[13] (a) G. C. Shields, P. G. Seybold, Computational Approaches for the Prediction of pKa Values 2013 (CRC Press: Boca Raton, FL).
(b) Y. E. Zevatskii, D. V. Samoilov, Russ. J. Org. Chem. 2011, 47, 1445.
| Crossref | GoogleScholarGoogle Scholar |
(c) K. S. Alongi, G. C. Shields, Annu. Rep. Comput. Chem. 2010, 6, 113.
| Crossref | GoogleScholarGoogle Scholar |
(d) A. C. Lee, G. M. Crippen, J. Chem. Inf. Model. 2009, 49, 2013.
| Crossref | GoogleScholarGoogle Scholar |
[14] J. Ho, M. L. Coote, Theor. Chem. Acc. 2010, 125, 3.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXisFWmug%3D%3D&md5=669f7c1e292d0a5747eb880b867d3f85CAS |
[15] J. Ho, M. L. Coote, Comput. Mol. Sci. 2011, 1, 649.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFWrtrnI&md5=7ed4a972a3e72fb7a4271275ceb67c82CAS |
[16] (a) J. P. Merrick, D. Moran, L. Radom, J. Phys. Chem. A 2007, 111, 11683.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFOrs77F&md5=ee0ea1823313cafa2b549377a8c6c674CAS | 17948971PubMed |
(b) A. P. Scott, L. Radom, J. Phys. Chem. 1996, 100, 16502.
| Crossref | GoogleScholarGoogle Scholar |
[17] A. Moser, K. Range, D. M. York, J. Phys. Chem. B 2010, 114, 13911.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht12jur3M&md5=42210f66c9ddfd7fed3ece5b4ff6b9dbCAS | 20942500PubMed |
[18] K. Raghavachari, G. W. Trucks, J. A. Pople, M. Head-Gordon, Chem. Phys. Lett. 1989, 157, 479.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXlsVSkt7s%3D&md5=4d5a57f25869c56dbc86cf227ef9eb87CAS |
[19] L. A. Curtiss, P. C. Redfern, K. Raghavachari, J. Chem. Phys. 2007, 126, 084108.
| Crossref | GoogleScholarGoogle Scholar | 17343441PubMed |
[20] D. J. Henry, M. B. Sullivan, L. Radom, J. Chem. Phys. 2003, 118, 4849.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhs1ensL0%3D&md5=ee799b5e80fdad42a3bb091ef8e1a75eCAS |
[21] J. A. Montgomery, M. J. Frisch, J. W. Ochterski, G. A. Petersson, J. Chem. Phys. 1999, 110, 2822.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXltlKntg%3D%3D&md5=143901429a5e88c3ddf6867e12c886a2CAS |
[22] J. W. Ochterski, G. A. Petersson, J. A. Montgomery, J. Chem. Phys. 1996, 104, 2598.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XpvVGnsg%3D%3D&md5=270db5434b485f912afae1b6010eac30CAS |
[23] N. J. DeYonker, T. Grimes, S. Yockel, A. A. Dinescu, B. Mintz, A. K. Wilson, J. Chem. Phys. 2006, 125, 104111.
| Crossref | GoogleScholarGoogle Scholar | 16999519PubMed |
[24] S. A. Nedd, N. J. De Yonker, A. K. Wilson, P. Piecuch, M. S. Gordon, J. Chem. Phys. 2012, 136, 144109.
| Crossref | GoogleScholarGoogle Scholar | 22502503PubMed |
[25] B. J. Lynch, D. G. Truhlar, J. Phys. Chem. A 2003, 107, 3898.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjtVWntLs%3D&md5=7974f8c3a64f754a5806dcac64d1ec17CAS |
[26] (a) P. Piecuch, M. Wloch, J. Chem. Phys. 2005, 123, 224105.
| Crossref | GoogleScholarGoogle Scholar | 16375468PubMed |
(b) M. Wloch, J. R. Gour, P. Piecuch, J. Phys. Chem. A 2007, 111, 11359.
| Crossref | GoogleScholarGoogle Scholar |
[27] (a) E. K. Pokon, M. D. Liptak, S. Feldgus, G. C. Shields, J. Phys. Chem. A 2001, 105, 10483.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXns1Kqs7s%3D&md5=bcd4117db6cbcc47d103021e547b5597CAS |
(b) F. C. Pickard, D. R. Griffith, S. J. Ferrara, M. D. Liptak, K. N. Kirschner, G. C. Shields, Int. J. Quantum Chem. 2006, 106, 3122.
| Crossref | GoogleScholarGoogle Scholar |
(c) E. Toomsalu, I. A. Koppel, P. Burk, J. Chem. Theory Comput. 2013, 9, 3947.
| Crossref | GoogleScholarGoogle Scholar |
(d) M. L. Stover, V. E. Jackson, M. H. Matus, M. A. Adams, C. J. Cassady, D. A. Dixon, J. Phys. Chem. B 2012, 116, 2905.
| Crossref | GoogleScholarGoogle Scholar |
[28] A. D. Boese, M. Oren, O. Atasoylu, J. M. L. Martin, M. Kallay, J. Gauss, J. Chem. Phys. 2004, 120, 4129.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhslaksLc%3D&md5=e39a00f792058ed66076549f51580b19CAS | 15268579PubMed |
[29] A. Karton, E. Rabinovich, J. M. L. Martin, J. Chem. Phys. 2006, 125, 144108.
| Crossref | GoogleScholarGoogle Scholar | 17042580PubMed |
[30] M. Morris, B. Chan, L. Radom, J. Phys. Chem. A 2012, 116, 12381.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhslyltb%2FI&md5=72f899acebac03de45dd9c4a528efc4cCAS | 23214477PubMed |
[31] B. Chan, J. Deng, L. Radom, J. Chem. Theory Comput. 2011, 7, 112.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFaktLzK&md5=f8b6b36b2b419698bfd51faa79e3a9bdCAS |
[32] B. Chan, L. Radom, J. Chem. Theory Comput. 2012, 8, 4259.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlOjtbvP&md5=56309e8cab0a0776e2cbe045edf64e1bCAS |
[33] B. Chan, L. Radom, J. Chem. Theory Comput. 2013, 9, 4769.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1Cgt7nF&md5=de45bfacc465cf3758e61f0b8076d84aCAS |
[34] L. Kong, F. A. Bischoff, E. F. Valeev, Chem. Rev. 2012, 112, 75.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1aqu7rL&md5=d09399b4aab7f06f39236902fc263d60CAS | 22176553PubMed |
[35] (a) G. Knizia, T. B. Adler, H.-J. Werner, J. Chem. Phys. 2009, 130, 054104.
| Crossref | GoogleScholarGoogle Scholar | 19206955PubMed |
(b) T. B. Adler, G. Knizia, H.-J. Werner, J. Chem. Phys. 2007, 127, 221106.
| Crossref | GoogleScholarGoogle Scholar |
[36] A. Karton, J. M. L. Martin, J. Chem. Phys. 2012, 136, 124114.
| Crossref | GoogleScholarGoogle Scholar | 22462842PubMed |
[37] (a) T. Vreven, K. Morokuma, Annu. Rep. Comput. Chem. 2006, 2, 35.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjslWru7w%3D&md5=e1e1be48adda8f72dabf352cdc65ec6eCAS |
(b) H. M. Senn, W. Thiel, Angew. Chem. Int. Ed. 2009, 48, 1198.
| Crossref | GoogleScholarGoogle Scholar |
(c) M. W. van der Kamp, A. J. Mulholland, Biochemistry 2013, 52, 2708.
| Crossref | GoogleScholarGoogle Scholar |
(d) S. C. L. Kamerlin, M. Haranczyk, A. Warshel, J. Phys. Chem. B 2009, 113, 1253.
| Crossref | GoogleScholarGoogle Scholar |
[38] (a) J. W. Ponder, D. A. Case, Adv. Protein Chem. 2003, 66, 27.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXos1yhsQ%3D%3D&md5=08374c94af30e1d41a8f985f80a1693fCAS | 14631816PubMed |
(b) R. Salomon-Ferrer, D. A. Case, R. C. Walker, Comp. Mol. Sci. 2013, 3, 198.
| Crossref | GoogleScholarGoogle Scholar |
[39] A. D. J. Mackerell, in Computational Biochemistry and Biophysics (Eds O. M. Becker, A. D. J. Mackerell, B. Roux, M. Watanabe) 2001, pp. 7–38 (Taylor & Francis: New York, NY).
[40] T. Vreven, K. S. Byun, I. Komaromi, S. Dapprich, J. A. Montgomery, K. Morokuma, M. J. Frisch, J. Chem. Theory Comput. 2006, 2, 815.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjsFWqsb0%3D&md5=e65d8c67a3afdb7e0676c732ab7ffc7dCAS |
[41] J. A. Gascon, E. M. Sproviero, V. B. Batista, J. Chem. Theory Comput. 2006, 2, 175.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1ajsrrI&md5=b4a705fb2692a9079318fb1942e79080CAS |
[42] T. Vreven, K. Morokuma, J. Comput. Chem. 2000, 21, 1419.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXot1Gnsbc%3D&md5=54f222c6d05da57cc98cb6440714481fCAS |
[43] (a) R. D. J. Froese, K. Morokuma, J. Phys. Chem. A 1999, 103, 4580.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjtFOkurY%3D&md5=9870cef2583aae9ffde795dc57e2bd76CAS |
(b) R. D. J. Froese, S. Humbel, M. Svensson, K. Morokuma, J. Phys. Chem. A 1997, 101, 227.
| Crossref | GoogleScholarGoogle Scholar |
[44] M.-J. Li, L. Lei, F. Yao, Q.-X. Guo, J. Phys. Chem. B 2005, 109, 13818.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlsFKhtLY%3D&md5=56892c323c71dd024d04087e3fface09CAS | 16852730PubMed |
[45] (a) M. L. Coote, C. Y. Lin, H. Zipse, in Carbon-Centered Free Radicals and Radical Cations: Structure, Reactivity, and Dynamics (Ed. M. D. E. Forbes) 2010, pp. 83–104 (John Wiley & Sons, Inc.: Hoboken, NJ).
(b) C. Y. Lin, J. Peh, M. L. Coote, J. Org. Chem. 2011, 76, 1715.
| Crossref | GoogleScholarGoogle Scholar |
[46] C. Y. Lin, E. I. Izgorodina, M. L. Coote, Macromolecules 2010, 43, 553.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVensrjP&md5=8d8bb25b603c93f4c9fc1552acffc600CAS |
[47] (a) G. Gryn’ova, J. M. Barakat, J. P. Blinco, S. E. Bottle, M. L. Coote, Chem. – Eur. J. 2012, 18, 7582.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmtFeku74%3D&md5=1dfc537343447f47392728c5dd183f6eCAS | 22532461PubMed |
(b) J. P. Blinco, J. L. Hodgson, B. J. Morrow, J. R. Walker, G. D. Will, M. L. Coote, S. E. Bottle, J. Org. Chem. 2008, 73, 6763.
| Crossref | GoogleScholarGoogle Scholar |
(c) J. L. Hodgson, M. Namazian, S. E. Bottle, M. L. Coote, J. Phys. Chem. A 2007, 111, 13595.
| Crossref | GoogleScholarGoogle Scholar |
[48] S. R. Das, T. G. Williams, M. L. Drummond, A. K. Wilson, J. Phys. Chem. A 2010, 114, 9394.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpvFSntb0%3D&md5=8a7d14559cc6b8fdf6b25d6cdd110cd7CAS | 20701242PubMed |
[49] A. G. Riojas, J. R. John, T. G. Williams, A. K. Wilson, J. Comput. Chem. 2012, 33, 2590.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlSgtLzE&md5=d01e7b0ceb94c7fab021d026435568caCAS | 22941806PubMed |
[50] (a) M. S. Gordon, Q. A. Smith, P. Xu, L. V. Slipchenko, Annu. Rev. Phys. Chem. 2013, 64, 553.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXntVCrs7g%3D&md5=c34921b2571bd5ffe45ec0c4ab1bd88fCAS | 23561011PubMed |
(b) M. S. Gordon, L. V. Slipchenko, L. Hui, J. H. Jensen, Annu. Rep. Comput. Chem. 2007, 3, 177.
| Crossref | GoogleScholarGoogle Scholar |
[51] H. Li, A. W. Hains, J. E. Everts, A. D. Robertson, J. H. Jensen, J. Phys. Chem. B 2002, 106, 3486.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xhs1Cjt7w%3D&md5=dc47335b25fcd6c49f03d88a7e2bbb6fCAS |
[52] J. H. Jensen, H. Li, A. D. Robertson, P. A. Molina, J. Phys. Chem. A 2005, 109, 6634.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmtVChtr0%3D&md5=f1c76da8bd18d3bf21ded4473f6534a6CAS | 16834015PubMed |
[53] (a) P. Goyal, N. Ghosh, P. Phatak, M. Clemens, M. Gaus, M. Elstner, Q. Cui, J. Am. Chem. Soc. 2011, 133, 14981.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFaks7rN&md5=a9e461446ec6527780cdb86856966ee0CAS | 21761868PubMed |
(b) D. Riccardi, P. Schaefer, Q. Cui, J. Phys. Chem. B 2005, 109, 17715.
| Crossref | GoogleScholarGoogle Scholar |
[54] (a) D. Deev, M. A. Collins, J. Chem. Phys. 2005, 122, 154102/1.
| 1:CAS:528:DC%2BD2MXktlyrtbc%3D&md5=637fcc6300707dabcaa2e8c42ebb121bCAS |
(b) M. A. Collins, Phys. Chem. Chem. Phys. 2012, 14, 7744.
| Crossref | GoogleScholarGoogle Scholar |
[55] (a) D. G. Fedorov, K. Kitaura, J. Phys. Chem. A 2007, 111, 6904.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlsVKjurg%3D&md5=96dc6871351d7bcc2d8ddb5829ca320eCAS | 17511437PubMed |
(b) D. G. Fedorov, K. Kitaura, J. Chem. Phys. 2005, 122, 054108.
| Crossref | GoogleScholarGoogle Scholar |
[56] (a) M. S. Gordon, D. G. Fedorov, S. R. Pruitt, L. V. Slipchenko, Chem. Rev. 2012, 112, 632.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVyhurjJ&md5=964ae1111b79f51753e80288610cdd62CAS | 21866983PubMed |
(b) M. S. Gordon, J. M. Mullin, S. R. Pruitt, L. B. Roskop, L. V. Slipchenko, J. A. Boatz, J. Phys. Chem. B 2009, 113, 9646.
| Crossref | GoogleScholarGoogle Scholar |
[57] (a) C. J. Cramer, D. G. Truhlar, Phys. Chem. Chem. Phys. 2009, 11, 10757.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVentrfK&md5=e7ab0da4de215c9b3597f87f68056300CAS | 19924312PubMed |
(b) Y. Zhao, D. G. Truhlar, Acc. Chem. Res. 2008, 41, 157.
| Crossref | GoogleScholarGoogle Scholar |
(c) M. Orio, D. A. Pantazis, F. Neese, Photosynth. Res. 2009, 102, 443.
| Crossref | GoogleScholarGoogle Scholar |
[58] (a) A. D. Becke, Phys. Rev. A 1988, 38, 3098.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXmtlOhsLo%3D&md5=89a4d6eea189a0acadf44cab2961b4a3CAS | 9900728PubMed |
(b) J. P. Perdew, Phys. Rev. B 1986, 33, 8822.
| Crossref | GoogleScholarGoogle Scholar |
[59] Y. Zhao, D. G. Truhlar, J. Chem. Phys. 2006, 125, 194101.
| Crossref | GoogleScholarGoogle Scholar | 17129083PubMed |
[60] (a) A. D. Becke, J. Chem. Phys. 1993, 98, 5648.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXisVWgtrw%3D&md5=bd225cbbb5eb5750cbd4a95028b56b80CAS |
(b) C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785.
| Crossref | GoogleScholarGoogle Scholar |
[61] C. Adamo, V. Barone, J. Chem. Phys. 1999, 110, 6158.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXitVCmt7Y%3D&md5=a4e1fde0260333c84e4e82d620bda277CAS |
[62] A. D. Boese, J. M. L. Martin, J. Chem. Phys. 2004, 121, 3405.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXms1Kjtb4%3D&md5=f58bcb5145ebdffdefe0d2ca09c8f8c4CAS | 15303903PubMed |
[63] Y. Zhao, D. G. Truhlar, Theor. Chem. Acc. 2008, 120, 215.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXltFyltbY%3D&md5=78694ab799c17471eb4f1547406dfe71CAS |
[64] M. D. Liptak, G. C. Shields, Int. J. Quantum Chem. 2005, 105, 580.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1Siur7O&md5=808f97b3fdedb2f967e9dd3fe7c0856fCAS |
[65] (a) D. R. B. Brittain, C. Y. Lin, A. T. B. Gilbert, E. I. Izgorodina, P. M. W. Gill, M. L. Coote, Phys. Chem. Chem. Phys. 2009, 11, 1138.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhslShtLk%3D&md5=b8b98d1c575d755a9204833a4fb6bee9CAS |
(b) S. Grimme, Org. Lett. 2010, 12, 4670.
| Crossref | GoogleScholarGoogle Scholar |
(c) J.-W. Song, T. Tsuneda, T. Sato, K. Hirao, Org. Lett. 2010, 12, 1440.
| Crossref | GoogleScholarGoogle Scholar |
(d) E. I. Izgorodina, M. L. Coote, L. Radom, J. Phys. Chem. A 2005, 109, 7558.
| Crossref | GoogleScholarGoogle Scholar |
[66] P. Burk, I. A. Koppel, I. Koppel, I. Leito, O. Travnikova, Chem. Phys. Lett. 2000, 323, 482.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXktV2rtbs%3D&md5=71521f7354a1f4b3412ecf25b53d45e2CAS |
[67] (a) S. Grimme, Comp. Mol. Sci. 2011, 1, 211.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXksVGlu70%3D&md5=27998b4e174af3ecc7f821ef0e237d15CAS |
(b) L. Goerigk, S. Grimme, Phys. Chem. Chem. Phys. 2011, 13, 6670.
| Crossref | GoogleScholarGoogle Scholar |
(c) Y. Zhao, D. G. Truhlar, Acc. Chem. Res. 2008, 41, 157.
| Crossref | GoogleScholarGoogle Scholar |
[68] P. G. Seybold, Adv. Quantum Chem. 2012, 64, 83.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVegurzO&md5=041f3ce2450d91870df812e58f35c1cdCAS |
[69] (a) L. P. Hammett, Trans. Faraday Soc. 1938, 34, 156.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaA1cXitVWhsw%3D%3D&md5=bc817466b988ceb7e73a03a1d9a654a4CAS |
(b) L. P. Hammett, J. Am. Chem. Soc. 1937, 59, 96.
| Crossref | GoogleScholarGoogle Scholar |
(c) L. P. Hammett, Chem. Rev. 1935, 17, 125.
| Crossref | GoogleScholarGoogle Scholar |
[70] (a) I. Alkorta, M. Z. Griffiths, P. L. A. Popelier, J. Phys. Org. Chem. 2013, 26, 791.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFShurnN&md5=cb68f151f66714622a3431c728de1b07CAS |
(b) M. Z. Griffiths, I. Alkorta, P. L. A. Popelier, Mol. Inf. 2013, 32, 363.
| Crossref | GoogleScholarGoogle Scholar |
(c) A. P. Harding, P. L. A. Popelier, Phys. Chem. Chem. Phys. 2011, 13, 11264.
| Crossref | GoogleScholarGoogle Scholar |
(d) A. P. Harding, P. L. A. Popelier, Phys. Chem. Chem. Phys. 2011, 13, 11283.
| Crossref | GoogleScholarGoogle Scholar |
[71] (a) K. C. Gross, P. G. Seybold, C. M. Hadad, Int. J. Quantum Chem. 2002, 90, 445.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XntVSiu7c%3D&md5=fa471e3ddd318b03b5f4e59cbccbb1c2CAS |
(b) C. A. Hollingsworth, P. G. Seybold, C. M. Hadad, Int. J. Quantum Chem. 2002, 90, 1396.
| Crossref | GoogleScholarGoogle Scholar |
[72] K. C. Gross, P. G. Seybold, Z. Peralta-Inga, J. S. Murray, P. Politzer, J. Org. Chem. 2001, 66, 6919.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmvVKit74%3D&md5=5682b3ac729c341d03fe44a4e0ed0614CAS | 11597210PubMed |
[73] (a) Y. Huang, L. Liu, W. Liu, S. Liu, S. Liu, J. Phys. Chem. A 2011, 115, 14697.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVKiurjF&md5=a390cde8ef7d24ec1e46256ca46dbcd5CAS | 22082252PubMed |
(b) S. Liu, L. G. Pedersen, J. Phys. Chem. A 2009, 113, 3648.
| Crossref | GoogleScholarGoogle Scholar |
(c) S. Liu, K. Cynthia, L. G. Pedersen, J. Chem. Phys. 2009, 131, 164107/1.
[74] S. K. Burger, S. Liu, P. W. Ayers, J. Phys. Chem. A 2011, 115, 1293.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVeksbk%3D&md5=89d3b5b36c76183c83258000473a06acCAS | 21291187PubMed |
[75] (a) G. I. Hawe, I. Alkorta, P. L. A. Popelier, J. Chem. Inf. Model. 2010, 50, 87.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFOhsQ%3D%3D&md5=873f0d2d840eb7177460ed14b0263defCAS | 20050643PubMed |
(b) A. P. Harding, D. C. Wedge, P. L. A. Popelier, J. Chem. Inf. Model. 2009, 49, 1914.
| Crossref | GoogleScholarGoogle Scholar |
(c) P. L. A. Popelier, P. J. Smith, Eur. J. Med. Chem. 2006, 41, 862.
| Crossref | GoogleScholarGoogle Scholar |
[76] K. C. Gross, P. G. Seybold, Int. J. Quantum Chem. 2001, 85, 569.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXosVGhurw%3D&md5=a8f0b6a916608531d57095021c2e200cCAS |
[77] (a) A. Klamt, F. Eckert, M. Diedenhofen, M. E. Beck, J. Phys. Chem. A 2003, 107, 9380.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXotVarsbo%3D&md5=bd39939625ef2c380b6b2e16225a3d8bCAS |
(b) F. Eckert, I. Leito, I. Kaljurand, A. Kütt, A. Klamt, M. Diedenhofen, J. Comput. Chem. 2009, 30, 799.
| Crossref | GoogleScholarGoogle Scholar |
(c) F. Eckert, A. Klamt, J. Comput. Chem. 2006, 27, 11.
| Crossref | GoogleScholarGoogle Scholar |
[78] (a) S. Zhang, J. Baker, P. Pulay, J. Phys. Chem. A 2010, 114, 425.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFWmurzN&md5=dd8d1833712aba0f6cd9f19bab5eaa74CAS | 19961191PubMed |
(b) S. Zhang, J. Baker, P. Pulay, J. Phys. Chem. A 2010, 114, 432.
| Crossref | GoogleScholarGoogle Scholar |
(c) R. Casasnovas, J. Frau, J. Ortega-Castro, J. Donoso, F. Munoz, J. Phys. Chem. B 2013, 117, 2339.
| Crossref | GoogleScholarGoogle Scholar |
(d) R. Casasnovas, M. Adrover, J. Ortega-Castro, J. Frau, J. Donoso, F. Munoz, J. Phys. Chem. B 2012, 116, 10665.
| Crossref | GoogleScholarGoogle Scholar |
(e) R. Gilson, M. C. Durrant, Dalton Trans. 2009, 10223.
| Crossref | GoogleScholarGoogle Scholar |
[79] (a) J. J. Klicic, R. A. Friesner, S.-Y. Liu, W. C. Guida, J. Phys. Chem. A 2002, 106, 1327.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xnt1Gmsw%3D%3D&md5=8eaf4f3da42947c7f5f296c088d5ce71CAS |
(b) J. T. Muckerman, J. H. Skone, M. Ning, Y. Wasada-Tsutsui, Biochim. Biophys. Acta 2013, 1827, 882.
| Crossref | GoogleScholarGoogle Scholar |
(c) T. Matsui, T. Baba, K. Kamiya, Y. Shigeta, Phys. Chem. Chem. Phys. 2012, 14, 4181.
| Crossref | GoogleScholarGoogle Scholar |
(d) H. Lu, X. Chen, C. G. Zhan, J. Phys. Chem. B 2007, 111, 10599.
| Crossref | GoogleScholarGoogle Scholar |
(e) V. Bryantsev, Chem. Phys. Lett. 2013, 558, 42.
| Crossref | GoogleScholarGoogle Scholar |
[80] (a) B. J. Smith, Phys. Chem. Chem. Phys. 2000, 2, 5383.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXot1KksLo%3D&md5=44c281aee3f22d6b1437cb083a00c90cCAS |
(b) N. Sadlej-Sosnowska, Theor. Chem. Acc. 2007, 118, 281.
| Crossref | GoogleScholarGoogle Scholar |
(c) T. B. Lee, M. L. McKee, Phys. Chem. Chem. Phys. 2011, 13, 10258.
| Crossref | GoogleScholarGoogle Scholar |
[81] (a) J. R. Pliego, Chem. Phys. Lett. 2003, 367, 145.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XovFGmt7c%3D&md5=40ca8b4f07c5baad90765aa36e95a7d0CAS |
(b) V. S. Bryantsev, M. S. Diallo, W. A. Goddard, J. Phys. Chem. B 2008, 112, 9709.
| Crossref | GoogleScholarGoogle Scholar |
(c) D. M. Camaioni, C. A. Schwerdtfeger, J. Phys. Chem. A 2005, 109, 10795.
| Crossref | GoogleScholarGoogle Scholar |
[82] (a) J. Tomasi, B. Mennucci, R. Cammi, Chem. Rev. 2005, 105, 2999.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmsVynurc%3D&md5=56defe400410427bc5df2a020f39d1d6CAS | 16092826PubMed |
(b) C. J. Cramer, D. G. Truhlar, Chem. Rev. 1999, 99, 2161.
| Crossref | GoogleScholarGoogle Scholar |
[83] R. K. Wangsness, Electromagnetic Fields 1979 (John Wiley & Sons: New York, NY).
[84] C. J. Cramer, D. G. Truhlar, J. Am. Chem. Soc. 1991, 113, 8305.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXmtFKhu70%3D&md5=2869abc74b0e57a23064a1466c659d25CAS |
[85] G. Scalmani, M. J. Frisch, J. Chem. Phys. 2010, 132, 114110.
| Crossref | GoogleScholarGoogle Scholar | 20331284PubMed |
[86] (a) M. Cossi, N. Rega, G. Scalmani, V. Barone, J. Comput. Chem. 2003, 24, 669.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXivFWqsbc%3D&md5=a80cd6bf0b20b57ed2af671111b208f2CAS | 12666158PubMed |
(b) V. Barone, M. Cossi, J. Phys. Chem. A 1998, 102, 1995.
| Crossref | GoogleScholarGoogle Scholar |
[87] J. B. Foresman, T. A. Keith, K. B. Wiberg, J. Snoonian, M. J. Frisch, J. Phys. Chem. 1996, 100, 16098.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XlsFCqtbg%3D&md5=bc068667dae30a17c9c232e55aae33a3CAS |
[88] A. V. Marenich, R. M. Olson, C. P. Kelly, C. J. Cramer, D. G. Truhlar, J. Chem. Theory Comput. 2007, 3, 2011.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFSqsrbJ&md5=0e024911fba482199939f0e2ccbeed2dCAS |
[89] A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B 2009, 113, 6378.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXksV2is74%3D&md5=b322b0fff21ba5ddb7cbe0a3d5b09758CAS | 19366259PubMed |
[90] (a) I. Soteras, C. Curutchet, A. Bidon-Chanal, M. Orozco, F. J. Luque, THEOCHEM 2005, 727, 29.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXot1Cjur8%3D&md5=bc6f6aed705436269cdccd534c72b591CAS |
(b) C. Curutchet, M. Orozco, F. J. Luque, J. Comput. Chem. 2001, 22, 1180.
| Crossref | GoogleScholarGoogle Scholar |
[91] J. Liu, C. P. Kelly, A. C. Goren, A. V. Marenich, C. J. Cramer, D. G. Truhlar, C.-G. Zhan, J. Chem. Theory Comput. 2010, 6, 1109.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXislyqsrg%3D&md5=7b8b7331b0a9816bb17e02494efcbefeCAS | 20419072PubMed |
[92] A. Pomogaeva, D. M. Chipman, J. Chem. Theory Comput. 2011, 7, 3952.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlyjsrvI&md5=c90feec178eb86501704b1876e7540a0CAS |
[93] B. Marten, K. Kim, C. Cortis, R. Friesner, R. B. Murphy, M. N. Ringnalda, D. Sitkoff, B. Honig, J. Phys. Chem. 1996, 100, 11775.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xjs1Ogs7c%3D&md5=c6ba35204de293e7cf595458f322e2d2CAS |
[94] (a) A. Klamt, G. Schurmann, J. Chem. Soc., Perkin Trans. 2 1993, 799.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXkvVSku7o%3D&md5=f5a47e4e44464367885e0e136aeefdd7CAS |
(b) A. Klamt, Comp. Mol. Sci. 2011, 1, 699.
| Crossref | GoogleScholarGoogle Scholar |
[95] (a) A. Klamt, COSMO-RS: From Quantum Chemistry to Fluid Phase Thermodynamics and Drug Design 2005 (Elsevier Science Ltd.: Amsterdam).
(b) A. Klamt, V. Jonas, T. Burger, J. C. W. Lohrenz, J. Phys. Chem. A 1998, 102, 5074.
| Crossref | GoogleScholarGoogle Scholar |
[96] A. V. Marenich, C. P. Kelly, J. D. Thompson, G. D. Hawkins, C. C. Chambers, D. J. Giesen, P. Winget, C. J. Cramer, D. G. Truhlar, Minnesota Solvation Database – version 2012 2012 (University of Minnesota: Minneapolis, MN).
[97] (a) C.-S. Zuo, O. Wiest, Y.-D. Wu, J. Phys. Chem. A 2009, 113, 12028.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVKmtbjM&md5=53ad0d305bf758fb7167aba89cb6e7d1CAS | 19719098PubMed |
(b) E. S. Boes, E. Bernardi, H. Stassen, P. F. B. Goncalves, Chem. Phys. 2008, 344, 101.
| Crossref | GoogleScholarGoogle Scholar |
[98] (a) M. Bachs, F. J. Luque, M. Orozco, J. Comput. Chem. 1994, 15, 446.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXit1ylt7s%3D&md5=61f741400929a55c001513fa20cde4f4CAS |
(b) V. Barone, M. Cossi, J. Tomasi, J. Chem. Phys. 1997, 107, 3210.
| Crossref | GoogleScholarGoogle Scholar |
[99] (a) F. J. Luque, M. Bachs, C. Aleman, M. Orozco, J. Comput. Chem. 1996, 17, 806.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xitlyqs7k%3D&md5=5ec3921aab70dea5924bcd9a4bb0847fCAS |
(b) F. J. Luque, Y. Zhang, C. Aleman, M. Bachs, J. Gao, M. Orozco, J. Phys. Chem. 1996, 100, 4269.
| Crossref | GoogleScholarGoogle Scholar |
[100] J. R. Pliego, J. M. Riveros, Chem. Phys. Lett. 2002, 355, 543.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XislSjs7Y%3D&md5=7ee578fcede561edc4bc290afae26c22CAS |
[101] G. I. Almerindo, D. W. Tondo, J. R. Pliego, J. Phys. Chem. A 2004, 108, 166.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXps1Smsbc%3D&md5=b4857bdbcc7ae45fb5e3df5411969836CAS |
[102] Y. Fu, L. Liu, H.-Z. Yu, Y.-M. Wang, Q.-X. Guo, J. Am. Chem. Soc. 2005, 127, 7227.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjtl2ntLw%3D&md5=4691ec82a1fd8ac90003d8c87a21f82bCAS | 15884964PubMed |
[103] E. S. Boes, J. Andrade, P. F. B. Goncalves, H. Stassen, Chem. Phys. Lett. 2007, 436, 362.
| Crossref | GoogleScholarGoogle Scholar |
[104] E. S. Boes, P. R. Livotto, H. Stassen, Chem. Phys. 2006, 331, 142.
| Crossref | GoogleScholarGoogle Scholar |
[105] A. C. Chamberlin, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B 2008, 112, 3024.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXitVamt78%3D&md5=38d539df89bb74bfa1eb154288e981b2CAS | 18281971PubMed |
[106] M. Gupta, E. F. da Silva, H. F. Svendsen, J. Phys. Chem. B 2012, 116, 1865.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XosFehsA%3D%3D&md5=ca7807b7f08391406a49e237344430c8CAS | 22251398PubMed |
[107] M. Gupta, E. F. da Silva, H. F. Svendsen, J. Phys. Chem. B 2013, 117, 7695.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXotlegur4%3D&md5=333ba176441ca754ee579a0c44b92139CAS | 23713904PubMed |
[108] M. J. McGrath, I.-F. Kuo, B. F. Ngouana, J. N. Ghogumo, C. J. Mundy, A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. I. Siepmann, Phys. Chem. Chem. Phys. 2013, 15, 13578.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFOgtrbM&md5=10fcdad64eeaed5c6a3b81d388b4def1CAS | 23831584PubMed |
[109] B. Schröder, L. M. N. B. F. Santos, I. M. Marrucho, J. A. P. Coutinho, Fluid Phase Equilib. 2010, 289, 140.
| Crossref | GoogleScholarGoogle Scholar |
[110] S. Alnemrat, J. P. Hooper, J. Phys. Chem. A 2013, 117, 2035.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXit1ehtrw%3D&md5=2075d00f8ca55c3d6e4518703b781520CAS | 23398143PubMed |
[111] A. Klamt, F. Eckert, M. Diedenhofen, J. Phys. Chem. B 2009, 113, 4508.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXivF2qtbo%3D&md5=95f3c7fc48191b3e81ffa20935db32f2CAS | 19275198PubMed |
[112] M. Kolar, J. Fanfrlík, M. Lepsí̌k, F. Forti, F. J. Luque, P. Hobza, J. Phys. Chem. B 2013, 117, 5950.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmt1egsbk%3D&md5=b77977097264b8ce25bba8ffef540baeCAS | 23600402PubMed |
[113] (a) A. Klamt, B. Mennucci, J. Tomasi, V. Barone, C. Curutchet, M. Orozco, F. J. Luque, Acc. Chem. Res. 2009, 42, 489.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhvFGnt7o%3D&md5=5e73b2b38f16ca931cb05342c3186ec9CAS | 19222200PubMed |
(b) J. Ho, A. Klamt, M. L. Coote, J. Phys. Chem. A 2010, 114, 13442.
| Crossref | GoogleScholarGoogle Scholar |
[114] R. Gomer, G. Tryson, J. Chem. Phys. 1977, 66, 4413.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2sXkvFamt78%3D&md5=ce6a22691626e4a4a0d6a7020caa130eCAS |
[115] (a) A. Borazio, J. R. Farrell, P. McTigue, J. Electroanal. Chem. 1985, 193, 103.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXlvVGks7c%3D&md5=3cdae596dc2ecc3791d31634e7703bfbCAS |
(b) J. R. Farrell, P. McTigue, J. Electroanal. Chem. 1982, 139, 37.
| Crossref | GoogleScholarGoogle Scholar |
[116] S. M. Kathmann, I.-F. W. Kuo, C. J. Mundy, J. Am. Chem. Soc. 2008, 130, 16556.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlOrsrbI&md5=467ad67284070f5beb2c3953a8ef6e30CAS | 19554692PubMed |
[117] (a) W. R. Fawcett, Langmuir 2008, 24, 9868.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXps1Citb4%3D&md5=dc8d28d1cc56d79f26e37626de00c532CAS | 18690731PubMed |
(b) S. Trasatti, in Modern Aspects of Electrochemistry (Eds B. E. Conway, J. M. Bockris) 1979 (Plenum Press: New York, NY).
[118] V. P. Sokhan, D. J. Tildesley, Mol. Phys. 1997, 92, 625.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXnsVWjtL4%3D&md5=7b298529e4c73ad776d7b2d6e94c2d89CAS |
[119] (a) R. G. Pearson, J. Am. Chem. Soc. 1986, 108, 6109.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XlsFantLg%3D&md5=453c19b0668e0dfd4f57e0844f350340CAS |
(b) J. R. Pliego, J. M. Riveros, Phys. Chem. Chem. Phys. 2002, 4, 1622.
| Crossref | GoogleScholarGoogle Scholar |
(c) J. R. Pliego, J. M. Riveros, Chem. Phys. Lett. 2000, 332, 597.
| Crossref | GoogleScholarGoogle Scholar |
[120] (a) C. P. Kelly, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B 2007, 111, 408.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlWlsL%2FI&md5=f25ed772988e267ae5a653b921579c49CAS | 17214493PubMed |
(b) J. Ho, M. L. Coote, C. J. Cramer, D. G. Truhlar, in Organic Electrochemistry (Eds O. Hammerich, B. Speiser) 2013, in press (CRC Press: Boca Raton, FL).
[121] (a) M. D. Tissandier, K. A. Cowen, W. Y. Feng, E. Gundlach, M. H. Cohen, A. D. Earhart, J. V. Coe, J. Phys. Chem. A 1998, 102, 7787.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXlvVOjsbs%3D&md5=a15e38eba685f77635cd294a6c948419CAS |
(b) C. P. Kelly, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B 2006, 110, 16066.
| Crossref | GoogleScholarGoogle Scholar |
[122] (a) W. A. Donald, E. R. Williams, J. Phys. Chem. B 2010, 114, 13189.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtF2qsrnE&md5=88348788c0ab9b037d2af68e0dacb448CAS | 20863092PubMed |
(b) L. Vlcek, A. A. Chialvo, J. M. Simonson, J. Phys. Chem. A 2013, 117, 11328.
| Crossref | GoogleScholarGoogle Scholar |
[123] T. R. Tuttle, S. Malaxos, J. V. Coe, J. Phys. Chem. A 2002, 106, 925.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmslCrtA%3D%3D&md5=bde6211777933a13c3fd16be6258efd5CAS |
[124] (a) J. V. Coe, Int. Rev. Phys. Chem. 2001, 20, 33.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXit1ehu70%3D&md5=c741a639e494b2034604b6723169833eCAS |
(b) A. A. Isse, A. Gennaro, J. Phys. Chem. B 2010, 114, 7894.
| Crossref | GoogleScholarGoogle Scholar |
[125] (a) J. R. Pliego, E. L. M. Miguel, J. Phys. Chem. B 2013, 117, 5129.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXlsFWmtr0%3D&md5=0d9c6b61a8b3f63af93571f1eefce53aCAS | 23570440PubMed |
(b) D. Asthagiri, L. Pratt, H. S. Ashbaugh, J. Chem. Phys. 2003, 119, 2702.
| Crossref | GoogleScholarGoogle Scholar |
[126] Y. Takano, K. N. Houk, J. Chem. Theory Comput. 2005, 1, 70.
| Crossref | GoogleScholarGoogle Scholar |
[127] C. P. Kelly, C. J. Cramer, D. G. Truhlar, J. Chem. Theory Comput. 2005, 1, 1133.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFegsrbE&md5=ae7902df1fa853f3791cd48ee4e76943CAS |
[128] A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Chem. Theory Comput. 2009, 5, 2447.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpslOmsbg%3D&md5=343671a55af8affa98f0aa0094de8206CAS |
[129] TURBOMOLE V6.5 2013. Available at http://www.turbomole.com
[130] (a) M. Namazian, M. Zakery, M. R. Noorbala, M. L. Coote, Chem. Phys. Lett. 2008, 451, 163.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXit1ahtg%3D%3D&md5=d771177c38e7660bbcd0195000b458d7CAS |
(b) H. R. Zare, M. Eslami, M. Namazian, M. L. Coote, J. Phys. Chem. B 2009, 113, 8080.
| Crossref | GoogleScholarGoogle Scholar |
(c) G. da Silva, E. M. Kennedy, B. Z. Dlugogorski, J. Phys. Chem. A 2006, 110, 11371.
| Crossref | GoogleScholarGoogle Scholar |
(d) A. Oliva, B. Henry, M. F. Ruiz-Lopez, Chem. Phys. Lett. 2013, 561–562, 153.
| Crossref | GoogleScholarGoogle Scholar |
(e) B. T. Psciuk, B. H. Schlegel, J. Phys. Chem. B 2013, 117, 9518.
| Crossref | GoogleScholarGoogle Scholar |
(f) M. Namazian, H. Zare, M. L. Coote, Aust. J. Chem. 2012, 65, 486.
| Crossref | GoogleScholarGoogle Scholar |
(g) R. Álvarez-Diduk, M. T. Ramírez-Silva, A. Galano, A. Merkoci, J. Phys. Chem. B 2013, 117, 12347.
| Crossref | GoogleScholarGoogle Scholar |
(h) V. Verdolino, R. Cammi, B. H. Munk, B. H. Schlegel, J. Phys. Chem. B 2008, 112, 16860.
| Crossref | GoogleScholarGoogle Scholar |
[131] (a) J. Ho, M. L. Coote, J. Chem. Theory Comput. 2009, 5, 295.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXktVKqsQ%3D%3D&md5=f254503511d53c9f519f48611720fc9fCAS |
(b) Y.-L. Chen, N. L. Doltsinis, R. C. Hider, D. J. Barlow, J. Phys. Chem. Lett. 2012, 3, 2980.
| Crossref | GoogleScholarGoogle Scholar |
(c) D. M. Chipman, J. Phys. Chem. A 2002, 106, 7413.
| Crossref | GoogleScholarGoogle Scholar |
(d) K. E. Gutowski, D. A. Dixon, J. Phys. Chem. A 2006, 110, 12044.
| Crossref | GoogleScholarGoogle Scholar |
[132] H. A. De Abreu, W. B. De Almeida, H. Duarte, Chem. Phys. Lett. 2004, 383, 47.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpslyjtbY%3D&md5=9f17f8524463fcce8133196b35e65f0eCAS |
[133] J. R. J. Pliego, J. Phys. Chem. A 2001, 105, 7241.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXkvVSgtr4%3D&md5=f957df76369f6517537e737dda9411fdCAS |
[134] C. G. Zhan, D. A. Dixon, J. Phys. Chem. A 2001, 105, 11534.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXoslygtrs%3D&md5=54287eaf4f9dc13efe6a5aa43294b325CAS |
[135] D. Himmel, S. K. Goll, I. Leito, I. Krossing, Chem. – Eur. J. 2011, 17, 5808.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlslSrs7o%3D&md5=b5b0b3e6a76472b8d32811b3970209aeCAS | 21542031PubMed |
[136] W. A. Donald, R. D. Leib, M. Demireva, J. T. O’Brien, J. S. Prell, E. R. Williams, J. Am. Chem. Soc. 2009, 131, 13328.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVGktbnO&md5=ace002fb6c27c041b80348ee9187c372CAS | 19711981PubMed |
[137] W. A. Donald, R. D. Leib, J. T. O’Brien, M. F. Bush, E. R. Williams, J. Am. Chem. Soc. 2008, 130, 3371.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXitFejt7k%3D&md5=0d141ae05d75d97a36fed9c8fd4c3ec8CAS | 18288835PubMed |
[138] W. A. Donald, R. D. Leib, J. T. O’Brien, E. R. Williams, Chem. – Eur. J. 2009, 15, 5926.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXms12gu74%3D&md5=026c151c120c756d8f706a67d25a733fCAS | 19440999PubMed |
[139] J. J. Fifen, M. Nsangou, Z. Dhaouadi, O. Motpon, N.-E. Jaidane, J. Chem. Theory Comput. 2013, 9, 1173.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXntVaksA%3D%3D&md5=47feae018687ecc776df233924252edbCAS |
[140] Y. Marcus, Pure Appl. Chem. 1983, 55, 977.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXksF2ktro%3D&md5=e7a34ff7c0199b96a93da06c5d68554aCAS |
[141] (a) M. D. Liptak, G. C. Shields, J. Am. Chem. Soc. 2001, 123, 7314.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXkvV2quro%3D&md5=571eb00c9d3771b2e60198363957d1afCAS | 11472159PubMed |
(b) A. M. Magill, B. F. Yates, Aust. J. Chem. 2004, 57, 1205.
| Crossref | GoogleScholarGoogle Scholar |
(c) C. Lim, D. Bashford, M. Karplus, J. Phys. Chem. 1991, 95, 5610.
| Crossref | GoogleScholarGoogle Scholar |
(d) V. S. Bryantsev, M. S. Diallo, W. A. Goddard, J. Phys. Chem. A 2007, 111, 4422.
| Crossref | GoogleScholarGoogle Scholar |
(e) A. Trummal, A. Rummel, E. Lippmaa, P. Burk, I. Koppel, J. Phys. Chem. A 2009, 113, 6206.
| Crossref | GoogleScholarGoogle Scholar |
(f) E. Raamat, K. Kaupmees, G. Ovsjannikov, A. Trummal, A. Kutt, J. Saame, I. Koppel, I. Kaljurand, L. Lipping, T. Rodima, V. Pihl, I. A. Koppel, I. Leito, J. Phys. Org. Chem. 2013, 26, 162.
| Crossref | GoogleScholarGoogle Scholar |
(g) A. M. Magill, K. J. Cavell, B. F. Yates, J. Am. Chem. Soc. 2004, 126, 8717.
| Crossref | GoogleScholarGoogle Scholar |
[142] (a) C. P. Kelly, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. A 2006, 110, 2493.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XptFSisA%3D%3D&md5=fcd9c563d9b7eceec86a1c2eebfa251bCAS | 16480309PubMed |
(b) S. Zhang, J. Comput. Chem. 2012, 33, 517.
| Crossref | GoogleScholarGoogle Scholar |
[143] (a) P. Claverie, J. P. Daudey, J. Langlet, B. Pullman, D. Piazzola, M. J. Huron, J. Phys. Chem. 1978, 82, 405.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXhtFWgt70%3D&md5=337cb30d85d5008ebb64437140a948beCAS |
(b) E. Sanchez Marcos, R. R. Pappalardo, D. Rinaldi, J. Phys. Chem. 1991, 95, 8928.
| Crossref | GoogleScholarGoogle Scholar |
(c) E. Sanchez Marcos, B. Terryn, J. L. Rivail, J. Phys. Chem. 1985, 89, 4695.
| Crossref | GoogleScholarGoogle Scholar |
(d) I. Tunon, J. L. Rinaldi, M. F. Ruiz-Lopez, J. L. Rivail, J. Phys. Chem. 1995, 99, 3798.
| Crossref | GoogleScholarGoogle Scholar |
(e) C. Aleman, S. E. Galembeck, Chem. Phys. 1998, 232, 151.
| Crossref | GoogleScholarGoogle Scholar |
(f) I. A. Topol, G. J. Tawa, S. K. Burt, A. A. Rashin, J. Chem. Phys. 1999, 111, 10998.
| Crossref | GoogleScholarGoogle Scholar |
(g) P. Bandyopadhyay, M. S. Gordon, J. Chem. Phys. 2000, 113, 1104.
| Crossref | GoogleScholarGoogle Scholar |
[144] (a) C. M. Aikens, M. S. Gordon, J. Am. Chem. Soc. 2006, 128, 12835.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XptlOlt7o%3D&md5=0b27af5b5c12e91dd6917802c1a6c407CAS | 17002379PubMed |
(b) J. H. Jensen, M. S. Gordon, J. Am. Chem. Soc. 1995, 117, 8159.
| Crossref | GoogleScholarGoogle Scholar |
[145] S. B. Rempe, L. R. Pratt, G. Hummer, J. D. Kress, R. L. Martin, A. Redondo, J. Am. Chem. Soc. 2000, 122, 966.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXltVyiuw%3D%3D&md5=061adcf96eeb0a6f5bf121bedc8c5cc6CAS |
[146] (a) D. Asthagiri, L. Pratt, M. E. Paulaitis, S. B. Rempe, J. Am. Chem. Soc. 2004, 126, 1285.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXms1GlsQ%3D%3D&md5=a556596ab41a8dc804c6fc28f9bd39dcCAS | 14746502PubMed |
(b) P. Grabowski, D. Riccardi, M. A. Gomez, D. Asthagiri, L. Pratt, J. Phys. Chem. A 2002, 106, 9145.
| Crossref | GoogleScholarGoogle Scholar |
[147] J. R. Pliego, J. M. Riveros, J. Phys. Chem. A 2001, 105, 7241.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXkvVSgtr4%3D&md5=f957df76369f6517537e737dda9411fdCAS |
[148] Y. Fu, L. Liu, R.-Q. Li, R. Liu, Q.-X. Guo, J. Am. Chem. Soc. 2004, 126, 814.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjt1Ci&md5=d7c0168d71b530e53b7916e426455b85CAS | 14733556PubMed |
[149] D. D. Tommaso, N. H. Leeuw, J. Phys. Chem. B 2008, 112, 6965.
| Crossref | GoogleScholarGoogle Scholar |
[150] F. Ding, J. M. Smith, H. Wang, J. Org. Chem. 2009, 74, 2679.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjtFKhtbs%3D&md5=e21678a2bef16b34d3136685bc3e478cCAS | 19275192PubMed |
[151] E. Westphal, J. R. Pliego, J. Chem. Phys. 2005, 123, 074508.
| Crossref | GoogleScholarGoogle Scholar | 16229602PubMed |
[152] G. J. Tawa, I. A. Topol, S. K. Burt, R. A. Caldwell, A. A. Rashin, J. Chem. Phys. 1998, 109, 4852.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXlslyrsLs%3D&md5=24c2d3369f812665dec2bec6920d655bCAS |
[153] J. A. Mejias, S. Lago, J. Chem. Phys. 2000, 113, 7306.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXnsFSrtbw%3D&md5=cdf66d0efecd9881588936d036cd1682CAS |
[154] C.-G. Zhan, D. A. Dixon, J. Phys. Chem. A 2002, 106, 9737.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XktFOhsrk%3D&md5=cd6c110998752fc5a0f259e25f151ec1CAS |
[155] V. Bryantsev, Theor. Chem. Acc. 2012, 131, 1250.
| Crossref | GoogleScholarGoogle Scholar |
[156] E. Tang, D. D. Tommaso, N. H. Leeuw, Phys. Chem. Chem. Phys. 2010, 12, 13804.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1ykur7O&md5=4ab4c151f522898a1cbfe45bcabe04d4CAS | 20862433PubMed |
[157] J. Ciupka, X. Cao-Dolg, J. Wiebke, M. Dolg, Phys. Chem. Chem. Phys. 2010, 12, 13215.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1Gjtb3E&md5=b85486df084e214a672952ca78111903CAS | 20820581PubMed |
[158] D. Riccardi, H.-B. Guo, J. M. Parks, B. Gu, L. Liang, J. Smith, J. Chem. Theory Comput. 2013, 9, 555.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1Ogu7rL&md5=7d9c9a2d2fa303e5a0d4b07ac076fb8eCAS |
[159] (a) J. M. Mullin, M. S. Gordon, J. Phys. Chem. B 2009, 113, 8657.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXms1ens74%3D&md5=b8e5da782fa21a4762b8f76b6ae599b8CAS | 19485320PubMed |
(b) J. M. Mullin, M. S. Gordon, J. Phys. Chem. B 2009, 113, 14413.
| Crossref | GoogleScholarGoogle Scholar |
[160] E. F. da Silva, H. F. Svendsen, K. M. Merz, J. Phys. Chem. A 2009, 113, 6404.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXls1eiurw%3D&md5=db8cd4b3acd51c92c388ff5709e9a94dCAS | 19425558PubMed |
[161] M. Gupta, E. F. da Silva, H. F. Svendsen, J. Chem. Theory Comput. 2013, 9, 5021.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsFels77M&md5=bfd65d448519f080078fef2f675ce825CAS |
[162] I. A. Topol, G. J. Tawa, S. K. Burt, A. A. Rashin, J. Phys. Chem. A 1997, 101, 10075.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhs1ahsg%3D%3D&md5=3671273fd807dc9e2b49393779685f6dCAS |
[163] A. M. Toth, M. D. Liptak, D. L. Phillips, G. C. Shields, J. Chem. Phys. 2001, 114, 4595.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhsFGns7Y%3D&md5=689fadc23e6a6e5e581854d7b08f62c1CAS |
[164] M. Namazian, H. Heidary, THEOCHEM 2003, 620, 257.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXivVSntQ%3D%3D&md5=b94961c8a984c16415c185ffadc3b794CAS |
[165] R. Gomez-Bombarelli, M. Gonzalez-Perez, M. T. Perez-Prior, E. Calle, J. Casado, J. Org. Chem. 2009, 74, 4943.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmtlWgsb0%3D&md5=6d9c28c52682f209aababbc8d122e218CAS | 19459649PubMed |
[166] S. T. Ali, S. Karamat, J. Kona, W. Fabian, J. Phys. Chem. A 2010, 114, 12470.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlyks73J&md5=faa8a0995071c8fb40acca2ee0589571CAS | 21050024PubMed |
[167] (a) A. M. Rebollar-Zepeda, T. Campos-Hernandez, M. T. Ramirez-Silva, A. Rojas-Hernandez, A. Galano, J. Chem. Theory Comput. 2011, 7, 2528.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXovVKru7o%3D&md5=15963a2c834e8c989a118eb635d05992CAS |
(b) A. Galano, J. R. Alvarez-Idaboy, M. Francisco-Márquez, J. Phys. Chem. B 2011, 115, 13101.
| Crossref | GoogleScholarGoogle Scholar |
[168] (a) C. Fehling, G. Friedrichs, J. Am. Chem. Soc. 2011, 133, 17912.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlajurzO&md5=447fed853f3acef36c0e0643a172ba4dCAS | 22004536PubMed |
(b) J. Crugeiras, A. Rios, H. Maskill, J. Phys. Chem. A 2011, 115, 12357.
| Crossref | GoogleScholarGoogle Scholar |
[169] R. Gomez-Bombarelli, M. Gonzalez-Perez, M. T. Perez-Prior, E. Calle, J. Casado, J. Phys. Org. Chem. 2012, 25, 14.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1OlurzI&md5=f2b6e37e285e280c3edc027b68889c59CAS |
[170] S. Gangarapu, A. T. M. Marcelis, H. Zuihof, ChemPhysChem 2013, 14, 990.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXivVOhtLs%3D&md5=25b3279365ebcc503bcbfb669174da92CAS | 23436741PubMed |
[171] J. A. Keith, E. A. Carter, J. Chem. Theory Comput. 2012, 8, 3187.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFGiu7rI&md5=8a94cf529ee9db1c4772f60e85176cabCAS |
[172] J. Ho, M. L. Coote, M. Franco-Perez, R. Gomez-Balderas, J. Phys. Chem. A 2010, 114, 11992.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht12jtbbM&md5=b696b4d4e0334f162daa75629a86d96dCAS | 20949907PubMed |
[173] (a) J. I. Mujika, J. M. Ugalde, X. Lopez, Theor. Chem. Acc. 2011, 128, 477.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXisVaisrc%3D&md5=e8f8f26533c1a9eeece465f7908a5a94CAS |
(b) J. Alí-Torres, L. Rodríguez-Santiago, M. Sodupe, Phys. Chem. Chem. Phys. 2011, 13, 7852.
| Crossref | GoogleScholarGoogle Scholar |
(c) J. I. Mujika, J. M. Ugalde, X. Lopez, Phys. Chem. Chem. Phys. 2012, 14, 12465.
| Crossref | GoogleScholarGoogle Scholar |
(d) M. J. Javan, Z. Jamshidi, Z. A. Tehrani, A. Fattahi, Org. Biomol. Chem. 2012, 10, 9373.
| Crossref | GoogleScholarGoogle Scholar |
[174] (a) X.-J. Qi, L. Liu, Y. Fu, Q.-X. Guo, Organometallics 2006, 25, 5879.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFOqtrzE&md5=bc9f8210fa1348796c5141510b4b9070CAS |
(b) Y. Zhu, Y. Fan, K. Burgess, J. Am. Chem. Soc. 2010, 132, 6249.
| Crossref | GoogleScholarGoogle Scholar |
[175] X.-Q. Zhu, C.-H. Wang, H. Liang, J. Org. Chem. 2010, 75, 7240.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1ajt73O&md5=5550064dcf66d486aaf71504e64e2850CAS | 20873851PubMed |
[176] Y. Fu, H.-J. Wang, S.-S. Chong, Q.-X. Guo, L. Liu, J. Org. Chem. 2009, 74, 810.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVequ7jM&md5=ff3e4917e12593adc75e308aa613c00cCAS | 19035766PubMed |
[177] H.-Z. Yu, Y.-M. Yang, L. Zhang, Z.-M. Dang, G.-H. Hu, J. Phys. Chem. A 2014, 118, 606.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXjtVartw%3D%3D&md5=7537b746328af87b4dd3038fb337601cCAS | 24387165PubMed |
[178] X.-Y. Huang, H.-J. Wang, J. Shi, J. Phys. Chem. A 2010, 114, 1068.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhs1SmsLbN&md5=3163aede782668a481bff0999ae9abb1CAS | 20030369PubMed |
[179] J. R. Pliego, J. M. Riveros, J. Phys. Chem. A 2002, 106, 7434.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XltlWrtrs%3D&md5=aa794f948a5419a8ac4ee6cac8a86e13CAS |
[180] D. Asthagiri, L. Pratt, Chem. Phys. Lett. 2003, 371, 613.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXisV2gur8%3D&md5=81142ed715944ebe00292b2bc487271dCAS |
[181] F. Eckert, M. Diedenhofen, A. Klamt, Mol. Phys. 2010, 108, 229.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjvFKksrg%3D&md5=0116f4797101031f42dd3636841ae321CAS |
[182] A. V. Marenich, W. Ding, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. Lett. 2012, 3, 1437.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmsFGjt74%3D&md5=4fb7fbc1e7de693430e0ae8c26442050CAS |
[183] V. Bryantsev, M. Diallo, W. A. Goddard, J. Phys. Chem. A 2009, 113, 9559.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpsFaltLY%3D&md5=06908fadb3c1afc5bc803789289ce6b8CAS | 19655778PubMed |
[184] H. A. de Abreu, L. Guimaraes, H. Duarte, Int. J. Quantum Chem. 2008, 108, 2467.
| Crossref | GoogleScholarGoogle Scholar |
[185] L. Guimaraes, H. A. De Abreu, H. Duarte, Chem. Phys. 2007, 333, 10.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXitFeqsrk%3D&md5=de73abe3134d9142d2946239f3977fc0CAS |
[186] (a) W. Yang, Z. Qian, Q. Miao, Y. Wang, S. Bi, Phys. Chem. Chem. Phys. 2009, 11, 2396.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjslajsbY%3D&md5=36e3df96bcad795c1dcdbf81706aee5bCAS | 19325971PubMed |
(b) M. C. F. Wander, J. R. Rustad, W. H. Casey, J. Phys. Chem. A 2010, 114, 1917.
| Crossref | GoogleScholarGoogle Scholar |
(c) S. Bogatko, J. Moens, P. Geerlings, J. Phys. Chem. A 2010, 114, 7791.
| Crossref | GoogleScholarGoogle Scholar |
[187] (a) J. D. Kubicki, J. Phys. Chem. A 2001, 105, 8756.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlvFanu7Y%3D&md5=798e71bbf20f3db9016bb3d242833c0aCAS |
(b) H. A De Abreu, L. Guimaraes, H. A. Duarte, J. Phys. Chem. A 2006, 110, 7713.
| Crossref | GoogleScholarGoogle Scholar |
[188] C. C. R. Sutton, G. V. Franks, G. da Silva, J. Phys. Chem. B 2012, 116, 11999.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1Gnu7rI&md5=ef6362d33a5a40eacbfedffd3c070546CAS |
[189] A. M. Rebollar-Zepeda, A. Galano, Int. J. Quantum Chem. 2012, 112, 3449.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xks1yqtbo%3D&md5=fd5df579bc6bc24b8cb0793dfd70a6aeCAS |
[190] W. Sang-Aroon, V. Ruangpornvisuti, Int. J. Quantum Chem. 2008, 108, 1181.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjsFyhs7s%3D&md5=ab56ead25981d3a7d485be311c33bf61CAS |
[191] (a) T. N. Brown, N. Mora-Diez, J. Phys. Chem. B 2006, 110, 9270.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjsFKiu7s%3D&md5=cc1f9a7f7e67f266ba3be2044144b11eCAS | 16671744PubMed |
(b) T. N. Brown, N. Mora-Diez, J. Phys. Chem. B 2006, 110, 20546.
| Crossref | GoogleScholarGoogle Scholar |
(c) K. K. Govender, I. Cukrowski, J. Phys. Chem. A 2010, 114, 1868.
| Crossref | GoogleScholarGoogle Scholar |
(d) R. Casasnovas, D. Fernandez, J. Ortega-Castro, J. Frau, J. Donoso, F. Munoz, Theor. Chem. Acc. 2011, 130, 1.
| Crossref | GoogleScholarGoogle Scholar |
(e) S. Sastre, R. Casanovas, F. Munoz, J. Frau, Theor. Chem. Acc. 2013, 132, 1310.
| Crossref | GoogleScholarGoogle Scholar |
[192] R. F. Ribeiro, A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B 2011, 115, 14556.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFSjtr3O&md5=8679e860ffef154bcc9fe32be9e38378CAS | 21875126PubMed |
[193] A. Ben-Naim, Statistical Thermodynamics for Chemists and Biochemists 1992, p. 321 (Plenum: New York, NY).
[194] K. K. Govender, I. Cukrowski, J. Phys. Chem. A 2009, 113, 3639.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjsFKls7o%3D&md5=2554da1779e53b39f73487994b83b89aCAS | 19309100PubMed |
[195] R. Casasnovas, J. Ortega-Castro, J. Donoso, J. Frau, F. Munoz, Phys. Chem. Chem. Phys. 2013, 15, 16303.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVWrur7I&md5=63eb2f99183eb948bfbac619053f4682CAS | 23999915PubMed |
[196] (a) R. A. Abramson, K. K. Baldridge, J. Chem. Theory Comput. 2013, 9, 1027.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXitVCksA%3D%3D&md5=19e433bf40c1ddad8b6c58948c66c569CAS |
(b) R. A. Abramson, K. K. Baldridge, Mol. Phys. 2012, 110, 2401.
| Crossref | GoogleScholarGoogle Scholar |
[197] X. Lopez, M. Schaefer, A. Dejaegere, M. Karplus, J. Am. Chem. Soc. 2002, 124, 5010.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xis12gt7c%3D&md5=1051185d762abeb0ef0d53ac75b8a509CAS | 11982365PubMed |
[198] A. Fernandez-Ramos, B. A. Ellingson, R. Meana-Paneda, J. M. C. Marques, D. G. Truhlar, Theor. Chem. Acc. 2007, 118, 813.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFGrsbbP&md5=137d0e9d670c48ee39218c1c18f699d1CAS |
[199] (a) M. Krol, M. Wrona, C. S. Page, P. A. Bates, J. Chem. Theory Comput. 2006, 2, 1520.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XpslKit74%3D&md5=981f7d553ac386a7264374d12db8701eCAS |
(b) B. T. Psciuk, R. L. Lord, B. H. Munk, B. H. Schlegel, J. Phys. Chem. B 2012, 8, 5107.
[200] (a) R. Car, M. Parrinello, Phys. Rev. Lett. 1985, 55, 2471.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XhtVOlug%3D%3D&md5=535d76c2101be217d46060a780a416f1CAS | 10032153PubMed |
(b) K. R. Brorsen, N. Minezawa, F. Xu, T. L. Windus, M. S. Gordon, J. Chem. Theory Comput. 2012, 8, 5008.
| Crossref | GoogleScholarGoogle Scholar |
(c) M. Sato, H. Yamataka, Y. Komeiji, Y. Mochizuki, Chem. – Eur. J. 2012, 18, 9714.
| Crossref | GoogleScholarGoogle Scholar |
[201] (a) S. C. L. Kamerlin, A. Warshel, Comp. Mol. Sci. 2011, 1, 30.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXksVKjsLs%3D&md5=301aceb9dee89e89212d7eb6093e5786CAS |
(b) A. Warshel, Computer Modeling of Chemical Reactions in Enzymes and Solutions 1991 (Wiley: New York, NY).
(c) S. Hammes-Schiffer, Acc. Chem. Res. 2001, 34, 273.
| Crossref | GoogleScholarGoogle Scholar |
(d) G. A. Voth, Acc. Chem. Res. 2006, 39, 143.
| Crossref | GoogleScholarGoogle Scholar |
[202] (a) W. Yang, R. Bitetti-Putzer, M. Karplus, J. Chem. Phys. 2004, 120, 9450.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjvVSqsrs%3D&md5=a10c4af36110e3f9a12c014374ec7b8cCAS | 15267955PubMed |
(b) M. Higashi, D. G. Truhlar, J. Chem. Theory Comput. 2008, 4, 1032.
| Crossref | GoogleScholarGoogle Scholar |
(c) T. R. Furlani, J. Gao, J. Org. Chem. 1996, 61, 5492.
| Crossref | GoogleScholarGoogle Scholar |
(d) X. Chen, C. K. Regan, S. L. Craig, E. H. Krenske, K. N. Houk, W. L. Jorgensen, J. I. Brauman, J. Am. Chem. Soc. 2009, 131, 16162.
| Crossref | GoogleScholarGoogle Scholar |
[203] (a) D. Marx, J. Hutter, in Modern Methods and Algorithms of Quantum Chemistry (Ed. J. Grotendorst) 2000, 2nd edn, Vol. 3, pp. 329–477 (John von Neumann Institute for Computing: Jülich, Germany).
(b) M. E. Tuckerman, J. Phys. Condens. Matter 2002, 14, R1297.
| Crossref | GoogleScholarGoogle Scholar |
(c) J. S. Tse, Annu. Rev. Phys. Chem. 2002, 53, 249.
| Crossref | GoogleScholarGoogle Scholar |
(d) J. Hafner, Nat. Mater. 2010, 9, 690.
| Crossref | GoogleScholarGoogle Scholar |
(e) J. Hutter, Comp. Mol. Sci. 2012, 2, 604.
| Crossref | GoogleScholarGoogle Scholar |
[204] (a) C. D. Berweger, W. F. van Gunsteren, F. Muller-Plathe, Chem. Phys. Lett. 1995, 232, 429.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXjtl2rsrk%3D&md5=0ed5186f26d6fc1ae345a8c8a12e7fb5CAS |
(b) H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, J. Hermans, in Intermolecular Forces (Ed. B. Pullman) 1981, pp. 331–342 (Reidel: Dordrecht).
[205] M. Mahoney, W. Jorgensen, J. Chem. Phys. 2000, 112, 8910.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXivFCltr0%3D&md5=406191c5a00291d603123afb30843bd9CAS |
[206] G. Hummer, L. R. Pratt, A. E. Garcia, J. Chem. Phys. 1997, 107, 9275.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXnsFeisrk%3D&md5=e0b0cdf7f3b8f318b6b92a9abfbe36c9CAS |
[207] (a) M. Sprik, Chem. Phys. 2000, 258, 139.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXls1Cqu70%3D&md5=8abf5627d9047fd86aafa9e2297d5405CAS |
(b) M. Sprik, Faraday Discuss. 1998, 110, 437.
| Crossref | GoogleScholarGoogle Scholar |
(c) P. Marwick, N. L. Doltsinis, D. Marx, J. Chem. Phys. 2005, 122, 054122.
[208] (a) M. Iannuzzi, A. Laio, M. Parrinello, Phys. Rev. Lett. 2003, 90, 238302.
| Crossref | GoogleScholarGoogle Scholar | 12857293PubMed |
(b) A. Laio, M. Parrinello, Proc. Natl. Acad. Sci. USA 2002, 99, 12562.
| Crossref | GoogleScholarGoogle Scholar |
[209] (a) N. Uddin, T. H. Choi, C. H. Choi, J. Phys. Chem. B 2013, 117, 6269.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmt1ensLk%3D&md5=63fcb9a4cb14405fb7d2eb9cc467efd4CAS | 23600447PubMed |
(b) B. L. Trout, M. Parrinello, Chem. Phys. Lett. 1998, 288, 343.
| Crossref | GoogleScholarGoogle Scholar |
(c) B. L. Trout, M. Parrinello, J. Phys. Chem. B 1999, 103, 7340.
| Crossref | GoogleScholarGoogle Scholar |
[210] (a) N. L. Doltsinis, M. Sprik, Phys. Chem. Chem. Phys. 2003, 5, 2612.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXksVOntL0%3D&md5=c2e2e4190fa304b4d1c356008a28cf53CAS |
(b) J. E. Davies, N. L. Doltsinis, A. J. Kirby, C. D. Roussev, M. Sprik, J. Am. Chem. Soc. 2002, 124, 6594.
| Crossref | GoogleScholarGoogle Scholar |
[211] (a) G. Li, Q. Cui, J. Phys. Chem. B 2003, 107, 14521.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpt1Wqur0%3D&md5=6ba54341450db898da666fab2dd56852CAS |
(b) M. Sulpizi, M. Sprik, Phys. Chem. Chem. Phys. 2008, 10, 5238.
| Crossref | GoogleScholarGoogle Scholar |
[212] S. Kumar, D. Bouzida, R. H. Swendsen, P. A. Kollman, J. M. Rosenberg, J. Comput. Chem. 1992, 13, 1011.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XmtVynsrs%3D&md5=a55fed389db20a325369ffe2b4d2caa8CAS |
[213] (a) E. A. Carter, G. Ciccotti, J. T. Hynes, R. Kapral, Chem. Phys. 1989, 156, 472.
| 1:CAS:528:DyaL1MXks1CitrY%3D&md5=5795955ea8032fcf26dc6dc02f394eb4CAS |
(b) M. Sprik, G. Ciccotti, J. Chem. Phys. 1998, 109, 7737.
| Crossref | GoogleScholarGoogle Scholar |
[214] D. G. Chandler, Introduction to Modern Statistical Mechanics 1987 (Oxford University Press: New York, NY).
[215] J.-G. Lee, E. Asciutto, V. Babin, C. Sagui, T. Darden, C. Roland, J. Phys. Chem. B 2006, 110, 2325.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjvV2guw%3D%3D&md5=28cb8b207bc9e11321a0b7c5c4f3a53aCAS | 16471820PubMed |
[216] I. Ivanov, B. Chen, S. Raugei, M. L. Klein, J. Phys. Chem. B 2006, 110, 6365.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XitVKkt70%3D&md5=15c760cf3aeaae305198dc25eb29289eCAS | 16553455PubMed |
[217] M. Buhl, H. Kabrede, ChemPhysChem 2006, 7, 2290.
| Crossref | GoogleScholarGoogle Scholar | 17051575PubMed |
[218] I. Ivanov, M. L. Klein, J. Am. Chem. Soc. 2002, 124, 13380.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XotVegt70%3D&md5=02c2c377e30dfbb0f865749170cab2dfCAS | 12418879PubMed |
[219] X. Liu, X. Lu, R. Wang, H. Zhou, J. Phys. Chem. A 2010, 114, 12914.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVGksb3F&md5=2027acb60c708a4def8536eb6638aa1cCAS | 21087058PubMed |
[220] (a) X. Liu, X. Lu, E. J. Meijer, R. Wang, H. Zhou, Geochim. Cosmochim. Acta 2010, 74, 510.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFWmu73E&md5=a6b0d2961909e3cde9108d723467461bCAS |
(b) L. Bernasconi, E. J. Baerends, M. Sprik, J. Phys. Chem. B 2006, 110, 11444.
| Crossref | GoogleScholarGoogle Scholar |
[221] (a) J. Cheng, M. Sulpizi, M. Sprik, J. Chem. Phys. 2009, 131, 154504.
| Crossref | GoogleScholarGoogle Scholar | 20568869PubMed |
(b) M. Sulpizi, M. Sprik, J. Phys. Condens. Matter 2010, 22, 284116.
| Crossref | GoogleScholarGoogle Scholar |
(c) M. Mangold, L. Rolland, F. Costanzo, M. Sprik, M. Sulpizi, J. Blumberger, J. Chem. Theory Comput. 2011, 7, 1951.
| Crossref | GoogleScholarGoogle Scholar |
(d) X. Liu, M. Sprik, J. Cheng, Chem. Phys. Lett. 2013, 563, 9.
| Crossref | GoogleScholarGoogle Scholar |
[222] Y. Liu, X. Fan, Y. Jin, X. Hu, H. Hu, J. Chem. Theory Comput. 2013, 9, 4257.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFKrs7jE&md5=689f76de02a6a9a6d1b5f650abff3a0dCAS |
[223] (a) K. Leung, L. J. Criscenti, J. Phys. Condens. Matter 2012, 24, 124105.
| Crossref | GoogleScholarGoogle Scholar | 22395040PubMed |
(b) S. Tazi, B. Rotenberg, M. Salanne, M. Sprik, M. Sulpizi, Geochim. Cosmochim. Acta 2012, 94, 1.
| Crossref | GoogleScholarGoogle Scholar |
[224] (a) A. M. Baptista, V. H. Teixeira, C. M. Soares, J. Chem. Phys. 2002, 117, 4184.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmvVKisrw%3D&md5=91d83e81e0e519930adee98a46d8e5a2CAS |
(b) M. Dlugosz, J. M. Antosiewicz, Chem. Phys. 2004, 302, 161.
| Crossref | GoogleScholarGoogle Scholar |
(c) G. B. Goh, J. L. Knight, C. L. Brooks, J. Chem. Theory Comput. 2012, 8, 36.
| Crossref | GoogleScholarGoogle Scholar |
[225] (a) H. Sato, Phys. Chem. Chem. Phys. 2013, 15, 7450.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmvVSgsbY%3D&md5=991174074700093dd6720431d9e73fe5CAS | 23609955PubMed |
(b) K. Kido, H. Sato, S. Sakaki, J. Phys. Chem. B 2009, 113, 10509.
| Crossref | GoogleScholarGoogle Scholar |
[226] (a) M. S. Gordon, M. A. Freitag, B. Pradipta, J. H. Jensen, V. Kairys, W. J. Stevens, J. Phys. Chem. 2001, 105, 293.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXoslKisro%3D&md5=19984c11532e6529023f6bd8fba29c2aCAS |
(b) J. C. Flick, D. Kosenkov, E. G. Hohenstein, C. D. Sherrill, L. V. Slipchenko, J. Chem. Theory Comput. 2012, 8, 2835.
| Crossref | GoogleScholarGoogle Scholar |
[227] (a) Y. Wang, C. P. Sosa, A. Cembran, D. G. Truhlar, J. Gao, J. Phys. Chem. B 2012, 116, 6781.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XktVyntr0%3D&md5=3a73977dd19d6643da4f7ba299cb9642CAS | 22428657PubMed |
(b) L. Song, J. Han, Y.-L. Lin, W. Xie, J. Gao, J. Phys. Chem. A 2009, 113, 11656.
| Crossref | GoogleScholarGoogle Scholar |
[228] J. Han, M. J. M. Mazack, P. Zhang, D. G. Truhlar, J. Gao, J. Chem. Phys. 2013, 139, 054503/1.
| 1:CAS:528:DC%2BC3sXht1WhsLjE&md5=89af22d0185274cd3b1a541043ae60d9CAS |
[229] (a) W. L. Jorgensen, J. M. Briggs, J. Gao, J. Am. Chem. Soc. 1987, 109, 6857.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXlvFOnsL4%3D&md5=cd23ad88b393f5920cec1b288bd71795CAS |
(b) W. Jorgensen, C. Ravimohan, J. Chem. Phys. 1985, 83, 3050.
| Crossref | GoogleScholarGoogle Scholar |
(c) G. A. Kaminski, J. Phys. Chem. B 2005, 109, 5884.
| Crossref | GoogleScholarGoogle Scholar |