Synthesis and Structural Characterisation of Palladium(ii) Complexes with N,N′,N-Tridentate N′-Substituted N,N-Di(2-picolyl)amines and their Application to Methyl Methacrylate Polymerisation
Sunghoon Kim A , Dongil Kim A , Yujin Song A , Ha-Jin Lee B C and Hyosun Lee A DA Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, 1370 Sankyuk-dong, Buk-gu, Daegu-city, 702-701, Republic of Korea.
B Jeonju Center, Korea Basic Science Institute (KBSI), 634-18 Keumam-dong, Dukjin-gu, Jeonju-city, 561-180, Republic of Korea.
C Department of Chemistry, Chonbuk National University, Dukjin-gu, Jeonju-city, 561-756, Republic of Korea.
D Corresponding author. Email: hyosunlee@knu.ac.kr
Australian Journal of Chemistry 67(6) 953-961 https://doi.org/10.1071/CH13731
Submitted: 3 January 2014 Accepted: 20 February 2014 Published: 31 March 2014
Abstract
The reaction of [Pd(CH3CN)2Cl2] with N′-substituted N,N-di(2-picolyl)amine-based ancillary ligands, for example N,N-di(2-picolyl)cyclohexylmethylamine (L1), N,N-di(2-picolyl)benzylamine (L2), N,N-di(2-picolyl)aniline (L3), and 1,4-bis[bis(2-pyridylmethyl)aminomethyl]benzene (L4), in the presence of NaClO4 in ethanol yields a new series of [(NN′N)PdCl]X (X = ClO4, Cl) complexes, i.e. mononuclear [LnPdCl]ClO4 (Ln = L1, L2, L3) and binuclear [L4Pd2Cl2]Cl2. X-Ray crystallographic analysis determined that the Pd atom in complexes [(NN′N)PdCl]X showed a slightly distorted square-planar geometry involving three nitrogen atoms and a chlorido ligand. Moreover, the unit cell included a ClO4– or Cl– anion as the counterion. The complex [L1PdCl]ClO4 showed the highest catalytic activity for the polymerisation of methyl methacrylate in the presence of modified methylaluminoxane at 60°C among the mononuclear PdII complexes. Specifically, the activity of binuclear [L4Pd2Cl2]Cl2 was 2-fold higher than the corresponding mononuclear [L2PdCl]ClO4 per active palladium metal centre.
References
[1] B. Antonioli, B. Büchner, J. K. Clegg, K. Gloe, K. Gloe, L. Götzke, A. Heine, A. Jäger, K. A. Jolliffe, O. Kataeva, V. Kataev, R. Klingeler, T. Krause, L. F. Lindoy, A. Popa, W. Seichter, M. Wenzel, Dalton Trans. 2009, 4795.| Crossref | GoogleScholarGoogle Scholar | 19513491PubMed |
[2] P. Das, S. Bhattacharya, S. Mishra, A. Das, Chem. Commun. 2011, 47, 8118.
| Crossref | GoogleScholarGoogle Scholar |
[3] B. A. Smith, W. J. Akers, W. M. Leevy, A. J. Lampkins, S. Xiao, W. Wolter, M. A. Suckow, S. Achilefu, B. D. Smith, J. Am. Chem. Soc. 2010, 132, 67.
| Crossref | GoogleScholarGoogle Scholar | 20014845PubMed |
[4] M. Palaniandavar, R. J. Butcher, A. W. Addison, Inorg. Chem. 1996, 35, 467.
| Crossref | GoogleScholarGoogle Scholar | 11666231PubMed |
[5] J. Glerup, P. A. Coodson, D. J. Hodgson, K. Michelsen, K. M. Nielsen, H. Weihe, Inorg. Chem. 1992, 31, 4611.
| Crossref | GoogleScholarGoogle Scholar |
[6] D. Rojas, A. M. García, A. Vega, Y. Moreno, D. Venegas-Yazigi, M. T. Garland, J. Manzur, Inorg. Chem. 2004, 43, 6324.
| Crossref | GoogleScholarGoogle Scholar | 15446879PubMed |
[7] F. Ugozzoli, C. Massera, A. M. M. Lanfredi, N. Marsich, A. Camus, Inorg. Chim. Acta 2002, 340, 97.
| Crossref | GoogleScholarGoogle Scholar |
[8] F. R. Louka, M. L. Spell, J. Grebowicz, J. H. Albering, F. A. Mautner, S. S. Massoud, J. Mol. Struct. 2011, 995, 103.
| Crossref | GoogleScholarGoogle Scholar |
[9] L. Zhang, R. J. Clark, L. Zhu, Chem. – Eur. J. 2008, 14, 2894.
| Crossref | GoogleScholarGoogle Scholar | 18232042PubMed |
[10] A. Machkour, D. Mandon, M. Lachkar, R. Welter, Inorg. Chim. Acta 2005, 358, 839.
| Crossref | GoogleScholarGoogle Scholar |
[11] Effendy, F. Marchetti, C. Pettinari, B. W. Skelton, A. H. White, Inorg. Chim. Acta 2007, 360, 1424.
| Crossref | GoogleScholarGoogle Scholar |
[12] T. Nicholson, A. Mahmood, N. Limpa-Amara, N. Salvarese, M. K. Takase, P. Müller, Z. Akgun, A. G. Jones, Inorg. Chim. Acta 2011, 373, 301.
| Crossref | GoogleScholarGoogle Scholar |
[13] L. Cao, M. C. Jennings, R. J. Puddephatt, Inorg. Chem. 2007, 46, 1361.
| Crossref | GoogleScholarGoogle Scholar | 17291122PubMed |
[14] K. Visvaganesan, R. Mayilmurugan, E. Suresh, M. Palaniandavar, Inorg. Chem. 2007, 46, 10294.
| Crossref | GoogleScholarGoogle Scholar | 17958355PubMed |
[15] A. Woo, Y. H. Lee, S. Hayami, L. F. Lindoy, P. Thuéry, Y. Kim, J. Incl. Phenom. Macrocycl. Chem. 2011, 71, 409.
| Crossref | GoogleScholarGoogle Scholar |
[16] H. Yokoyama, A. Masuno, M. Misoo, K. Yamaguchi, S. Suzuki, J. Coord. Chem. 2010, 63, 762.
| Crossref | GoogleScholarGoogle Scholar |
[17] J. Qian, L. Wang, J. Tian, S. Yan, J. Coord. Chem. 2011, 64, 3256.
| Crossref | GoogleScholarGoogle Scholar |
[18] I. Romero, M. Rodríguez, A. Llobet, M.-N. Collomb-Dunand-Sauthier, A. Deronzier, T. Parella, H. Stoeckli-Evans, J. Chem. Soc., Dalton Trans. 2000, 1689.
| Crossref | GoogleScholarGoogle Scholar |
[19] M. J. Carney, N. J. Robertson, J. A. Halfen, L. N. Zakharov, A. L. Rheingold, Organometallics 2004, 23, 6184.
| Crossref | GoogleScholarGoogle Scholar |
[20] D. R. van Staveren, E. Bothe, T. Weyhermüller, N. Metzler-Nolte, Eur. J. Inorg. Chem. 2002, 1518.
| Crossref | GoogleScholarGoogle Scholar |
[21] P. C. Kunz, N. E. Brückmann, B. Spingler, Eur. J. Inorg. Chem. 2007, 394.
| Crossref | GoogleScholarGoogle Scholar |
[22] S. Thewissen, M. D. M. Reijnders, J. M. M. Smits, B. de Bruin, Organometallics 2005, 24, 5964.
| Crossref | GoogleScholarGoogle Scholar |
[23] C. J. Davies, G. A. Solan, J. Fawcett, Polyhedron 2004, 23, 3105.
| Crossref | GoogleScholarGoogle Scholar |
[24] I. Romero, M.-N. Collomb, A. Deronzier, A. Llobet, E. Perret, J. Pécaut, L. L. Pape, J.-M. Latour, Eur. J. Inorg. Chem. 2001, 69.
| Crossref | GoogleScholarGoogle Scholar |
[25] J. Qian, J. Tian, L. Feng, W. Gu, X.-J. Zhao, S.-P. Yan, J. Coord. Chem. 2009, 62, 1260.
| Crossref | GoogleScholarGoogle Scholar |
[26] J. Qian, L. Wang, W. Gu, X. Liu, J. Tian, S. Yan, Dalton Trans. 2011, 40, 5617.
| Crossref | GoogleScholarGoogle Scholar | 21468395PubMed |
[27] V. Balamurugan, J. Mukherjee, M. S. Hundal, R. Mukherjee, Struct. Chem. 2007, 18, 133.
| Crossref | GoogleScholarGoogle Scholar |
[28] A. Hazell, C. J. McKenzie, L. P. Nielsen, J. Chem. Soc., Dalton Trans. 1998, 1751.
| Crossref | GoogleScholarGoogle Scholar |
[29] D. L. M. Suess, J. C. Peters, Chem. Commun. 2010, 46, 6554.
| Crossref | GoogleScholarGoogle Scholar |
[30] R. Angamuthu, P. Byers, M. Lutz, A. L. Spek, E. Bouwman, Science 2010, 327, 313.
| Crossref | GoogleScholarGoogle Scholar | 20075248PubMed |
[31] Y. Zhao, J. Zhu, W. He, Z. Yang, Y. Zhu, Y. Li, J. Zhang, Z. Guo, Chem. – Eur. J. 2006, 12, 6621.
| Crossref | GoogleScholarGoogle Scholar | 16755636PubMed |
[32] T. Li, J. Du, T. Li, Z. Wu, W. He, J. Zhu, Z. Guo, Chem. Biodivers. 2008, 5, 1495.
| Crossref | GoogleScholarGoogle Scholar | 18729086PubMed |
[33] V. Balland, E. Anxolabéhére-Mallart, F. Banse, E. Riviére, S. Bourcier, M. Nierlich, J.-J. Girerd, Eur. J. Inorg. Chem. 2004, 1225.
| Crossref | GoogleScholarGoogle Scholar |
[34] S. Turba, O. Walter, S. Schindler, L. P. Nielsen, A. Hazell, C. J. McKenzie, F. Lloret, J. Cano, M. Julve, Inorg. Chem. 2008, 47, 9612.
| Crossref | GoogleScholarGoogle Scholar | 18798612PubMed |
[35] Y. Gultneh, A. R. Khan, D. Blake, S. Chaudhry, B. Ahvazi, B. B. Marvey, R. J. Butcher, J. Inorg. Biochem. 1999, 75, 7.
| Crossref | GoogleScholarGoogle Scholar |
[36] S. Schindler, D. J. Szalda, C. Creutz, Inorg. Chem. 1992, 31, 2255.
| Crossref | GoogleScholarGoogle Scholar |
[37] T. LeGuet, F. A. Mautner, S. Demeshko, F. Meyer, R. S. Perkins, S. S. Massoud, Inorg. Chem. Commun. 2009, 12, 321.
| Crossref | GoogleScholarGoogle Scholar |
[38] Ž. D. Bugarčić, G. Liehr, R. van Eldik, J. Chem. Soc., Dalton Trans. 2002, 951.
| Crossref | GoogleScholarGoogle Scholar |
[39] D. Jaganyi, F. Tiba, O. Q. Munro, B. Petrović, Ž. D. Bugarćić, Dalton Trans. 2006, 2943.
| Crossref | GoogleScholarGoogle Scholar | 16770452PubMed |
[40] S. I. Kirin, T. Weyhermüller, K. Merz, N. Metzler-Nolte, Z. Anorg. Allg. Chem. 2007, 633, 2706.
| Crossref | GoogleScholarGoogle Scholar |
[41] Z. Nagy, I. Fábián, A. Bényei, I. Sóvágo, J. Inorg. Biochem. 2003, 94, 291.
| Crossref | GoogleScholarGoogle Scholar | 12628710PubMed |
[42] A. Mambanda, D. Jaganyi, Dalton Trans. 2012, 41, 908.
| Crossref | GoogleScholarGoogle Scholar | 22095243PubMed |
[43] M. G. B. Drew, M. J. Riedl, J. Rodgers, J. Chem. Soc. Dalton 1972, 234.
| Crossref | GoogleScholarGoogle Scholar |
[44] B. Pitteri, G. Annibale, G. Marangoni, V. Bertolasi, V. Ferretti, Polyhedron 2002, 21, 2283.
| Crossref | GoogleScholarGoogle Scholar |
[45] H. A. Jenkins, G. P. A. Yap, R. J. Puddephatt, Organometallics 1997, 16, 1946.
| Crossref | GoogleScholarGoogle Scholar |
[46] O. Yamauchi, T. Yajima, R. Fujii, Y. Shimazaki, M. Yabusaki, M. Takani, M. Tashiro, T. Motoyama, M. Kakuto, Y. Nakabayashi, J. Inorg. Biochem. 2008, 102, 1218.
| Crossref | GoogleScholarGoogle Scholar | 18234344PubMed |
[47] L. Cao, M. C. Jennings, R. J. Puddephatt, Dalton Trans. 2009, 5171.
| Crossref | GoogleScholarGoogle Scholar | 19562178PubMed |
[48] E. Guney, V. T. Yilmaz, F. Ari, O. Buyukgungor, E. Ulukaya, Polyhedron 2011, 30, 114.
| Crossref | GoogleScholarGoogle Scholar |
[49] B. Pitteri, G. Marangoni, L. Cattalini, F. Visentin, V. Bertolasi, P. Gilli, Polyhedron 2001, 20, 869.
| Crossref | GoogleScholarGoogle Scholar |
[50] A. Hazell, C. J. McKenzie, L. P. Nielsen, Polyhedron 2000, 19, 1333.
| Crossref | GoogleScholarGoogle Scholar |
[51] M. Velusamy, M. Palaniandavar, K. R. J. Thomas, Polyhedron 1998, 17, 2179.
| Crossref | GoogleScholarGoogle Scholar |
[52] J. P. Wikstrom, A. S. Filatov, R. J. Staples, C. R. Guifarro, E. V. Rybak-Akimova, Inorg. Chim. Acta 2010, 363, 884.
| Crossref | GoogleScholarGoogle Scholar |
[53] L. Gotzke, K. Gloe, K. A. Jolliffe, L. F. Lindoy, A. Heine, T. Doert, A. Jager, K. Gloe, Polyhedron 2011, 30, 708.
| Crossref | GoogleScholarGoogle Scholar |
[54] A. Kunishita, Y. Doi, M. Kubo, T. Ogura, H. Sugimoto, S. Itoh, Inorg. Chem. 2009, 48, 4997.
| Crossref | GoogleScholarGoogle Scholar | 19374371PubMed |
[55] J. Rodgers, R. A. Jacobson, J. Chem. Soc. A 1970, 1826.
| Crossref | GoogleScholarGoogle Scholar |
[56] S. S. Massoud, F. A. Mautner, R. Vicente, F. R. Louka, Eur. J. Inorg. Chem. 2008, 3709.
[57] D. A. Powell-Jia, M. T.-N. Pham, J. W. Ziller, A. S. Borovik, Inorg. Chim. Acta 2010, 363, 2728.
| Crossref | GoogleScholarGoogle Scholar |
[58] A. Ojida, Y. Mito-oka, M.-a. Inoue, I. Hamachi, J. Am. Chem. Soc. 2002, 124, 6256.
| Crossref | GoogleScholarGoogle Scholar | 12033851PubMed |
[59] S. A. de Silva, A. Zavaleta, D. E. Baron, O. Allam, E. V. Isidor, N. Kasbimura, J. M. Percarpio, Tetrahedron Lett. 1997, 38, 2237.
| Crossref | GoogleScholarGoogle Scholar |
[60] R. G. Hanshaw, S. M. Hilkert, H. Jiang, B. D. Smith, Tetrahedron Lett. 2004, 45, 8721.
| Crossref | GoogleScholarGoogle Scholar |
[61] D. Kim, S. Kim, E. Kim, H.-J. Lee, H. Lee, Polyhedron 2013, 63, 139.
| Crossref | GoogleScholarGoogle Scholar |
[62] X. He, Y. Yao, X. Luo, J. Zhang, Y. Liu, L. Zhang, Q. Wu, Organometallics 2003, 22, 4952.
| Crossref | GoogleScholarGoogle Scholar |
[63] B. K. Bahuleyan, D. Chandran, C. H. Kwak, C.-S. Ha, I. Kim, Macromol. Res. 2008, 16, 745.
| Crossref | GoogleScholarGoogle Scholar |
[64] B. Lian, C. M. Thomas, O. L. Casagrande, C. W. Lehmann, T. Roisnel, J.-F. Carpentier, Inorg. Chem. 2007, 46, 328.
| Crossref | GoogleScholarGoogle Scholar | 17198443PubMed |
[65] J. Li, H. Song, C. Cui, Appl. Organomet. Chem. 2010, 24, 669.
| Crossref | GoogleScholarGoogle Scholar |
[66] W. Wang, P. A. Stenson, A. Marin-Becerra, J. McMaster, M. Schroder, D. J. Irvine, D. Freeman, S. M. Howdle, Macromolecules 2004, 37, 6667.
| Crossref | GoogleScholarGoogle Scholar |
[67] M. Yang, W. J. Park, K. B. Yoon, J. H. Jeong, H. Lee, Inorg. Chem. Commun. 2011, 14, 189.
| Crossref | GoogleScholarGoogle Scholar |
[68] Z. Zhang, D. Cui, A. A. Trifonov, Eur. J. Inorg. Chem. 2010, 2861.
| Crossref | GoogleScholarGoogle Scholar |
[69] C. Lansalot-Matras, F. Bonnette, E. Mignard, O. Lavastre, J. Organomet. Chem. 2008, 693, 393.
| Crossref | GoogleScholarGoogle Scholar |
[70] E. Kim, H. Y. Woo, S. Kim, H. Lee, D. Kim, H. Lee, Polyhedron 2012, 42, 135.
| Crossref | GoogleScholarGoogle Scholar |
[71] J. K. Romary, J. E. Bunds, J. D. Barger, J. Chem. Eng. Data 1967, 12, 224.
| Crossref | GoogleScholarGoogle Scholar |
[72] J. Llorens, E. Rudé, R. M. Marcos, Polymer 2003, 44, 1741.
| Crossref | GoogleScholarGoogle Scholar |
[73] T. Kitaura, T. Kitayama, Macromol. Rapid Commun. 2007, 28, 1889.
| Crossref | GoogleScholarGoogle Scholar |
[74] G. T. Lewis, V. Nguyen, Y. Cohen, J. Polym. Sci., Part A: Polym. Chem. 2007, 45, 5748.
| Crossref | GoogleScholarGoogle Scholar |
[75] Y.-J. Hu, H. H. Zou, M.-H. Zeng, N. S. Weng, J. Organomet. Chem. 2009, 694, 366.
| Crossref | GoogleScholarGoogle Scholar |
[76] C. Carlini, M. Martinelli, E. Passaglia, A. M. R. Galletti, G. Sbrana, Macromol. Rapid Commun. 2001, 22, 664.
| Crossref | GoogleScholarGoogle Scholar |
[77] G. Tang, G.-X. Jin, Dalton Trans. 2007, 3840.
| Crossref | GoogleScholarGoogle Scholar | 17712451PubMed |
[78] Y.-B. Huang, G.-R. Tang, G.-Y. Jin, G.-X. Jin, Organometallics 2008, 27, 259.
| Crossref | GoogleScholarGoogle Scholar |
[79] T. V. Laine, U. Piironen, K. Lappalainen, M. Klinga, E. Aitola, M. Leskela, J. Organomet. Chem. 2000, 606, 112.
| Crossref | GoogleScholarGoogle Scholar |
[80] B. B. Wayland, R. F. Schrammz, Inorg. Chem. 1969, 8, 971.
| Crossref | GoogleScholarGoogle Scholar |
[81] SMART and SAINT-Plus v 6.22 2000 (Bruker AXS Inc.: Madison, WI).
[82] G. M. Sheldrick, SADABS v 2.03 2002 (University of Göttingen: Göttingen).
[83] SHELXTL v 6.10 2000 (Bruker AXS, Inc.: Madison, WI).