Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

Computational Study of P3HT/C60-Fullerene Miscibility

David M. Huang
+ Author Affiliations
- Author Affiliations

School of Chemistry and Physics, The University of Adelaide, Adelaide, SA 5005, Australia. Email: david.huang@adelaide.edu.au

Australian Journal of Chemistry 67(4) 585-591 https://doi.org/10.1071/CH13518
Submitted: 27 September 2013  Accepted: 20 December 2013   Published: 21 January 2014

Abstract

Classical molecular dynamics simulations and statistical thermodynamics are used to investigate the miscibility of blends of the conjugated polymer poly(3-hexylthiophene) (P3HT) and fullerene C60 for blend ratios typically used in organic photovoltaic devices over a range of temperatures. Depending on which of two slightly different simulation force fields is used, the calculations suggest that amorphous P3HT/fullerene blends are either miscible or immisicble under typical processing conditions. The former result is consistent with recent experiments and suggests that experimentally observed nano-scale phase separation is driven by polymer or fullerene crystallisation. But the inconsistency between the different force fields indicates that these blends are close to phase coexistence between the separated and homogeneously mixed phases and suggests that care must be taken in interpreting simulation data on P3HT/fullerene blends. These findings have implications for organic photovoltaics, in which the microstructure of conjugated-polymer/fullerene blends plays a crucial role in device performance.


References

[1]  C. J. Brabec, S. Gowrisanker, J. J. M. Halls, D. Laird, S. Jia, S. P. Williams, Adv. Mater. 2010, 22, 3839.
         | 1:CAS:528:DC%2BC3cXhtFKlu73N&md5=60d37b9b327b8ae7252cf3c3dff50b2cCAS | 20717982PubMed |

[2]  C. J. Brabec, M. Heeney, I. McCulloch, J. Nelson, Chem. Soc. Rev. 2011, 40, 1185.
         | 1:CAS:528:DC%2BC3MXit1Kisb0%3D&md5=8dafcbaa6ecae1bf977e0ec45a8fe91bCAS | 21082082PubMed |

[3]  C. Müller, T. A. M. Ferenczi, M. Campoy-Quiles, J. M. Frost, D. D. C. Bradley, P. Smith, N. Stingelin-Stutzmann, J. Nelson, Adv. Mater. 2008, 20, 3510.

[4]  N. D. Treat, M. A. Brady, G. Smith, M. F. Toney, E. J. Kramer, C. J. Hawker, M. L. Chabinyc, Adv. Energy Mater. 2011, 1, 82.
         | 1:CAS:528:DC%2BC3MXivF2lu7k%3D&md5=64ecb032a09eb40e300116e957a32cb7CAS |

[5]  N. D. Treat, A. Varotto, C. J. Takacs, N. Batara, M. Al-Hashimi, M. J. Heeney, A. J. Heeger, F. Wudl, C. J. Hawker, M. L. Chabinyc, J. Am. Chem. Soc. 2012, 134, 15869.
         | 1:CAS:528:DC%2BC38XhtlGhsL%2FP&md5=5b87f25cf6261a51b764e2139cb2dde5CAS | 22974056PubMed |

[6]  F. C. Jamieson, E. B. Domingo, T. McCarthy-Ward, M. Heeney, N. Stingelin, J. R. Durrant, Chem. Sci. 2012, 3, 485.
         | 1:CAS:528:DC%2BC38Xkslaqug%3D%3D&md5=2d7b456b983e7c5520cf1aa6f4ec120dCAS |

[7]  P. Westacott, J. R. Tumbleston, S. Shoaee, S. Fearn, J. H. Bannock, J. B. Gilchrist, S. Heutz, J. deMello, M. Heeney, H. Ade, J. Durrant, D. S. McPhail, N. Stingelin, Energy Environ. Sci. 2013, 6, 2756.
         | 1:CAS:528:DC%2BC3sXhtlWqsrzK&md5=4b5348e6e88b803e2fddf4ad4423bbb8CAS |

[8]  D. Chen, A. Nakahara, D. Wei, D. Nordlund, T. P. Russell, Nano Lett. 2011, 11, 561.
         | 1:CAS:528:DC%2BC3cXhsF2msLrL&md5=bb06a583e9d6bed6668d2b03eb9c40ceCAS | 21174440PubMed |

[9]  D. R. Kozub, K. Vakhshouri, L. M. Orme, C. Wang, A. Hexemer, E. D. Gomez, Macromolecules 2011, 44, 5722.
         | 1:CAS:528:DC%2BC3MXotlGisLY%3D&md5=e7fe2f08e7d91bff91ced4c150cfbc51CAS |

[10]  J. Y. Kim, C. D. Frisbie, J. Phys. Chem. C 2008, 112, 17726.
         | 1:CAS:528:DC%2BD1cXht1GjsbnN&md5=dc864e3a32d9e3292b662e884de24e53CAS |

[11]  B. Watts, W. J. Belcher, L. Thomsen, H. Ade, P. C. Dastoor, Macromolecules 2009, 42, 8392.
         | 1:CAS:528:DC%2BD1MXht1eiurnJ&md5=c497c00487a59fa78273263613c7f70bCAS |

[12]  B. A. Collins, E. Gann, L. Guignard, X. He, C. R. McNeill, H. Ade, J. Phys. Chem. Lett. 2010, 1, 3160.
         | 1:CAS:528:DC%2BC3cXhtlWitLbK&md5=9afa63a0e160b98cb5dd52726c02d1efCAS |

[13]  M. Rubinstein, R. H. Colby, Polymer Physics 2003 (Oxford University Press: Oxford).

[14]  D. M. Huang, R. Faller, K. Do, A. J. Moulé, J. Chem. Theory Comput. 2010, 6, 526.
         | 1:CAS:528:DC%2BD1MXhs1aksrnI&md5=76bd1a84b84de1476433e6c27abf17a8CAS |

[15]  C.-K. Lee, C.-W. Pao, C.-W. Chu, Energy Environ. Sci. 2011, 4, 4124.
         | 1:CAS:528:DC%2BC3MXhsVKitbbL&md5=f4f902ea88579134f59c500420f9735fCAS |

[16]  D. M. Huang, A. J. Moulé, R. Faller, Fluid Phase Equilibr. 2011, 302, 21.
         | 1:CAS:528:DC%2BC3MXjt12mtrs%3D&md5=724a7c55e6792fc7e6de7662ca812e18CAS |

[17]  S. J. Plimpton, J. Comput. Phys. 1995, 117, 1.(LAMMPS Molecular Dynamics Simulator: http://lammps.sandia.gov).
         | 1:CAS:528:DyaK2MXlt1ejs7Y%3D&md5=2d19f84c87cb0e8968f3cc9e788cd67aCAS |

[18]  L. A. Girifalco, J. Phys. Chem. 1992, 96, 858.
         | 1:CAS:528:DyaK38Xks1Khsw%3D%3D&md5=87f26499e6d96580c055b4f0e80cc0adCAS |

[19]  K. N. Schwarz, T. W. Kee, D. M. Huang, Nanoscale 2013, 5, 2017.
         | 1:CAS:528:DC%2BC3sXis1Cgs78%3D&md5=d0c8dcb472e0917d04b0c5319b5b1c6dCAS | 23370200PubMed |

[20]  V. Marcon, G. Raos, J. Am. Chem. Soc. 2006, 128, 1408.
         | 1:CAS:528:DC%2BD28XjvV2rsA%3D%3D&md5=cd16a7653432af3e5a7a5b0107844331CAS | 16448085PubMed |

[21]  W. L. Jorgensen, D. S. Maxwell, J. Tirado-Rives, J. Am. Chem. Soc. 1996, 118, 11225.
         | 1:CAS:528:DyaK28XmtlOitrs%3D&md5=a9858f51d4696925417a74ad7bece601CAS |

[22]  D. J. Price, J. D. Roberts, W. L. Jorgensen, J. Am. Chem. Soc. 1998, 120, 9672.
         | 1:CAS:528:DyaK1cXlslaksbY%3D&md5=cfa416b61cf172a8f5ad635c6d641105CAS |

[23]  W. L. Jorgensen, N. A. McDonald, THEOCHEM 1998, 424, 145.
         | 1:CAS:528:DyaK1cXhtFynsrg%3D&md5=40ae5dc6d415e3c2209f17f44e66e43bCAS |

[24]  S. B. Darling, M. Sternberg, J. Phys. Chem. B 2009, 113, 6215.
         | 1:CAS:528:DC%2BD1MXjtFyku7k%3D&md5=cb39214cfc57050c9affc4841f712f97CAS | 19290596PubMed |

[25]  K. Hedberg, L. Hedberg, D. S. Bethune, C. A. Brown, H. C. Dorn, R. D. Johnson, M. De Vries, Science 1991, 254, 410.
         | 1:CAS:528:DyaK3MXmsl2isL0%3D&md5=05a2d09a72565240f7bb0e19b8a24acdCAS | 17742230PubMed |

[26]  M. P. Allen, D. J. Tildesley, Computer Simulation of Liquids 1987 (Clarendon: Oxford).

[27]  P. I. Hurtado, P. Chaudhuri, L. Berthier, W. Kob, AIP Conf. Proc. 2009, 1091, 166.
         | 1:CAS:528:DC%2BD1MXhsFOgtLg%3D&md5=4384ee5c88365920ecd170b96d882687CAS |

[28]  L. E. Reichl, A Modern Course in Statistical Physics 2nd edn, 1998 (Wiley-Interscience: New York, NY).

[29]  S. Hugger, R. Thomann, T. Heinzel, T. Thurn-Albrecht, Colloid Polym. Sci. 2004, 282, 932.
         | 1:CAS:528:DC%2BD2cXksVSntLw%3D&md5=e4abfc04c591079198af5236bd6cb281CAS |

[30]  Y. Jin, J. Cheng, M. Varma-Nair, G. Liang, Y. Fu, B. Wunderlich, X. D. Xiang, R. Mostovoy, A. K. Zettl, J. Phys. Chem. 1992, 96, 5151.
         | 1:CAS:528:DyaK38Xis1entrY%3D&md5=ab5e8202c4106f093654ec7e8576bd54CAS |