The Zwitterionic Structure of the Parent Amidinium Tetrazolide and a Rare Tetrazole Ring-Opening Reaction
Yosuke Uchiyama A B D , Joshua S. Dolphin A , Richard L. Harlow A , William J. Marshall C and Anthony J. Arduengo IIIA Department of Chemistry, The University of Alabama, Tuscaloosa, AL 35487-0336, USA.
B Department of Chemistry, School of Science, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan.
C DuPont Central Research, Experimental Station, E500/1808, Wilmington, DE 19880-0500, USA.
D Corresponding authors. Email: yosuke@kitasato-u.ac.jp; aj@ajarduengo.net
Australian Journal of Chemistry 67(3) 405-410 https://doi.org/10.1071/CH13460
Submitted: 2 September 2013 Accepted: 19 September 2013 Published: 10 October 2013
Abstract
A crystallization method for 5-amidinium tetrazolide (1) was developed. Crystals of the pure zwitterion 1 enabled the unambiguous assignment of the structure as an inner-salt rather than the amidine tetrazole postulated previously. The solid-state structure of 1 consists of two sets of hydrogen bonds that form a tightly networked two-dimensional sheet. The reaction of amidinium tetrazolide 1 with SOCl2 in the presence of 2.0 equiv. of Et3N produces 3-amino-4-azido-1,2,5-thiadiazole (2) as the sole product. The required tetrazole ring-opening reactivity suggests that the tetrazole moiety may function as a masked geminal azido-nitrene. The thionyl chloride reaction with the amidinium zwitterion 1 occurs not exclusively at the amidine, but rather in the Bay-region of 1, which comprises both the amidinium group and tetrazolide ring. Thiadiazole 2 has a planar structure with a 2D network of hydrogen bonds between the amino group and nitrogen atoms and an S⋯N interaction between the azido group and sulfur.
References
[1] G. Hervé, G. Jacob, Tetrahedron 2007, 63, 953.| Crossref | GoogleScholarGoogle Scholar |
[2] T. M. Klapötke, J. Stierstorfer, J. Am. Chem. Soc. 2009, 131, 1122.
| Crossref | GoogleScholarGoogle Scholar | 19115947PubMed |
[3] W. H. Graham, J. Am. Chem. Soc. 1965, 87, 4396.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2MXkvVyrsb8%3D&md5=fe644bd35afbc2549d93be1fe01ecdefCAS |
[4] R. A. Moss, Acc. Chem. Res. 1989, 22, 15.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXjvVejug%3D%3D&md5=a94d55296eb42512e334ef5535c5e81dCAS |
[5] A. R. Butler, I. Hussain, J. Chem. Soc., Perkin Trans. 2 1981, 317.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXksl2msLw%3D&md5=5403ed38b5717195eef5131c82f18cf9CAS |
[6] J. G. Michaels, J. Org. Chem. 1960, 25, 2246.
| Crossref | GoogleScholarGoogle Scholar |
[7] D. Moderhack, K.-H. Goos, Chem. Ber. 1987, 120, 921.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXkt1ehu7o%3D&md5=f8df977ff52099bbcac3f5cf034055ffCAS |
[8] E. W. Thomas, M. M. Cudahy, J. Org. Chem. 1993, 58, 1623.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXkt1yjtLs%3D&md5=8001c60335381272c67e2eb89f1d1ba2CAS |
[9] J.-Z. Liao, H. Ke, J.-J. Liu, Z.-Y. Li, M.-J. Lin, J.-D. Wang, C.-C. Huang, CrystEngComm 2013, 15, 4830.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXot1equrw%3D&md5=86db1b23d36b902508c0c8dbca1b2139CAS |
[10] N. Hassan, J. Stelzl, P. Weinberger, G. Molnar, A. Bousseksou, F. Kubel, K. Mereiter, R. Boca, W. Linert, Inorg. Chim. Acta 2013, 396, 92.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslWqurvM&md5=936442cd85edf5dbda46dedcb34da00cCAS |
[11] M. Hu, S.-T. Ma, L.-Q. Guo, S.-M. Fang, Acta Crystallogr. 2009, E65, m382.
[12] Y. Tao, J.-R. Li, Q. Yu, W.-C. Song, X.-L. Tong, X.-H. Bu, Chem. Eng. Commun. 2008, 10, 699.
| 1:CAS:528:DC%2BD1cXntVCgtrg%3D&md5=91ab13710a0b802c7664d54209955dcdCAS |
[13] X.-C. Wen, Acta Crystallogr. 2008, E64, m768.
[14] L.-L. Wu, C.-H. Yang, I.-W. Sun, S.-Y. Chu, P.-C. Kao, H.-H. Huang, Organometallics 2007, 26, 2017.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXisVSisbY%3D&md5=ea7ada6058a75c885196d38110818333CAS |
[15] A. Rodríguez, R. Kivekäs, E. Colacio, Chem. Commun. 2005, 5228.
| Crossref | GoogleScholarGoogle Scholar |
[16] X.-S. Wang, Y.-Z. Tang, X.-F. Huang, Z.-R. Qu, C.-M. Che, P. W. H. Chan, R.-G. Xiong, Inorg. Chem. 2005, 44, 5278.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXls1ajsb8%3D&md5=e4f0ca89343853df712097f0a333442eCAS | 16022526PubMed |
[17] O. A. Rakova, N. A. Sanina, S. M. Aldoshin, N. V. Goncharova, G. V. Shilov, Y. M. Shulga, N. S. Ovanesyan, Inorg. Chem. Commun. 2003, 6, 145.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XpsFKktbc%3D&md5=881d2489a442c92eee46da55cb5b2897CAS |
[18] L.-Z. Wang, Z.-R. Qu, H. Zhao, X.-S. Wang, R.-G. Xion, Z.-L. Xue, Inorg. Chem. 2003, 42, 3969.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXktFymurY%3D&md5=1912560f81d6ea057598ebd0b0208249CAS | 12817949PubMed |
[19] H. Gallardo, I. M. Begnini, A. Neves, I. Vencato, J. Braz. Chem. Soc. 2000, 11, 274.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXks1yqsL4%3D&md5=cd004bd8cd0e304a0ff4ccf57dc375baCAS |
[20] Y.-H. Song, Y.-C. Chiu, Y. Chi, P.-T. Chou, Y.-M. Cheng, C.-W. Lin, G.-H. Lee, A. J. Carty, Organometallics 2008, 27, 80.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVWqsLvK&md5=4cbbf422973050a39b74a79c43e1ba05CAS |
[21] N. Fischer, T. M. Klapötke, S. Rappenglück, J. Stierstorfer, ChemPlusChem 2012, 77, 877.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVOnsbrM&md5=358655318e055c284c73a1335265b8e5CAS |
[22] J. Trotter, Acta Crystallogr. 1961, 14, 1135.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF38Xit1WrtQ%3D%3D&md5=94a76b2c4493ebf5e2b7c29e73696f12CAS |
[23] A. T. Rizk, C. A. Kilner, M. A. Halcrow, CrystEngComm 2005, 7, 359.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXltlOqsbg%3D&md5=7bd2d084a520a9fb454341124444d3ddCAS |
[24] G. J. Durant, C. R. Ganellin, R. C. Young, U.S. Patent 4 118 502, 1978.
[25] (a) A. P. Komin, R. W. Street, M. Carmack, J. Org. Chem. 1975, 40, 2749.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2MXls1Cjurg%3D&md5=ab9d63069dbe44d65ae516cc4191f8a1CAS |
(b) R. N. Butler, D. A. O’Donoghue, G. A. O’Halloran, J. Chem. Soc., Chem. Comm. 1986, 800.
| Crossref | GoogleScholarGoogle Scholar |
(c) H. W. Roesky, H. H. Giere, Chem. Ber. 1969, 102, 2330.
| Crossref | GoogleScholarGoogle Scholar |
[26] (a) O. Dimroth, Justus Liebigs Ann. Chem. 1909, 364, 183.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaD1MXmt1Kh&md5=f7cedf4fba76b3c65f3516964eae56e6CAS |
(b) S. L. Deev, Z. O. Shenkarev, T. S. Shestakova, O. N. Chupakhin, V. L. Rusinnov, A. S. Arseniev, J. Org. Chem. 2010, 75, 8487.
| Crossref | GoogleScholarGoogle Scholar |
[27] Y. Jang, K. T. Kim, H. B. Jeon, J. Org. Chem. 2013, 78, 6328.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXosFSqsrY%3D&md5=6ca76d63533154b9efb2d2322c4170c6CAS | 23724848PubMed |
[28] K. Yamaguchi, A. Ohsawa, C. Kawabata, Acta Crystallogr. 1990, C46, 1749.
| 1:CAS:528:DyaK3cXmsVWqtb8%3D&md5=03d7c760596256174fe90cb6b5bc47ebCAS |
[29] A. Y. Makarov, I. G. Irtegova, N. V. Vasilieva, I. Y. Bagryanskaya, T. Borrmann, Y. V. Gatilov, E. Lork, R. Mews, W.-D. Stohrer, A. V. Zibarev, Inorg. Chem. 2005, 44, 7194.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpsVGhsbw%3D&md5=45e2944d7febd03defb0b21a2e88120cCAS | 16180884PubMed |
[30] Crystallographic data have been deposited with the Cambridge Crystallographic Data Centre: deposition numbers CCDC-958046 and 958047 for 1 and 2 respectively. Copies of the data can be obtained free of charge from http://www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge, CB2 1EZ, UK; fax +44 1223 336033; email deposit@ccdc.cam.ac.uk).