Synthesis of a Novel Polyaniline Glycopolymer and its Lectin Binding Studies
Christopher Wilcox A , Jianyong Jin A D , Hayley Charville A , Simon Swift B , Teresa To A , Paul A. Kilmartin A , Clive W. Evans C , Ralph Cooney A and Margaret Brimble AA School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
B Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
C School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
D Corresponding author. Email: j.jin@auckland.ac.nz
Australian Journal of Chemistry 67(4) 562-569 https://doi.org/10.1071/CH13452
Submitted: 30 August 2013 Accepted: 1 November 2013 Published: 5 December 2013
Abstract
We report the multistep synthesis and polymerisation of a novel aniline derivative with a pendant α-d-mannose substituent. The α-D-mannose functionality was successfully introduced before polymerisation via copper-catalysed azide alkyne click chemistry and the resulting monomer was polymerised using general oxidative polymerisation conditions, producing a water soluble mannosylated polyaniline. The polymer was characterised by several techniques and compared with standard polyaniline. The selective binding of the polymer to Concanavalin A (ConA) was successfully demonstrated by the precipitation of polymer–ConA aggregates. Potential applications of these novel polyaniline glycopolymers could include the development of electroactive biomaterials with the ability to bind mannose receptors, or as sensors for proteins or microbes.
References
[1] S. Ting, G. Chen, M. Stenzel, Polym. Chem. 2010, 1, 1392.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtl2msLnM&md5=56916afdb35d9f038a767650dfca6a5fCAS |
[2] C. Cusumano, J. Pinkner, Z. Han, S. Greene, B. Ford, J. Crowley, J. Henderson, J. Jenetka, S. Hultgren, Sci. Transl. Med. 2011, 3, 109ra115.
| Crossref | GoogleScholarGoogle Scholar | 22089451PubMed |
[3] L. Qu, P. Luo, S. Taylor, Y. Lin, W. Huang, N. Anyadike, T. Tzeng, F. Stutzenberger, R. Latour, Y. Sun, J. Nanosci. Nanotechno. 2005, 5, 319.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXisFGnu7s%3D&md5=1ca3d8eeb8c5ebbf2f6a6b74e177c190CAS |
[4] R. Pieters, Org. Biomol. Chem. 2009, 7, 2013.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlsFCks7o%3D&md5=cacc06c414c60fdac1ccc230e81914f8CAS | 19421435PubMed |
[5] M. R. Ruggieri, P. M. Hanno, R. M. Levin, Urol. Res. 1985, 13, 79.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXksFWju7c%3D&md5=4e96442b6b24e1994e6ff8762927fb8fCAS | 3892841PubMed |
[6] S. Spain, N. Cameron, Polym. Chem. 2011, 2, 60.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmvVOgtQ%3D%3D&md5=b38499510fc1bb3d40e8b72015316aceCAS |
[7] L. Gu, T. Elkin, X. Jiang, H. Li, Y. Lin, L. Qu, T. Tzeng, R. Joseph, Y. Sun, Chem. Commun. 2005, 874.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1Kqs7s%3D&md5=16ad46f7ebf8ab37908a59fd020150ccCAS |
[8] F. Hu, S. Chen, C. Wang, R. Yuan, Y. Xiang, C. Wang, Biosens. Bioelectron. 2012, 34, 202.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjvFKqtLY%3D&md5=44e1818950a0666c7aa647bfa411d72eCAS | 22387041PubMed |
[9] X. Huang, X. Huang, A. Yu, C. Wang, Z. Dai, Z. Xu, Macromol. Chem. Phys. 2011, 212, 272.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXovVClsw%3D%3D&md5=ea4fa9ebfc98a76233b568c5b9b83d89CAS |
[10] P. Luo, H. Wang, L. Gu, F. Lu, Y. Lin, K. Christensen, S. Yang, Y. Sun, ACS Nano 2009, 3, 3909.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVWhtrrL&md5=2b85235877a567a12fd657983aeb2268CAS | 19911831PubMed |
[11] Y. Miura, Polym. J. 2012, 44, 679.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XpsFOktLg%3D&md5=b5ab65abe4fef245c8079b68fce4241fCAS |
[12] N. Vinson, Y. Gou, R. Becer, D. M. Haddleton, M. I. Gibson, Polym. Chem. 2011, 2, 107.
| 1:CAS:528:DC%2BC3MXmvVOmtw%3D%3D&md5=5fb83ec3ab4d76464f97e539a18c2df7CAS |
[13] J. Lundquist, E. Toone, Chem. Rev. 2002, 102, 555.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XotVyltA%3D%3D&md5=acd5dd6725aaee853a123569128f7e07CAS | 11841254PubMed |
[14] M. Disney, J. Zheng, T. Swager, P. Seeberger, J. Am. Chem. Soc. 2004, 126, 13343.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnvVekt74%3D&md5=7ba044cab01c80b6d78334d4f10e507aCAS | 15479090PubMed |
[15] H. Charville, J. Jin, C. Evans, M. Brimble, D. Williams, RSC Adv. 2013, 3, 15435.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1CksLvI&md5=8d24551b60dc0580bdeb9dcd2e6f82ccCAS |
[16] C. Gondran, M. P. Dubois, S. Fort, S. Cosnier, S. Szunerits, Analyst 2008, 133, 206.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVGnu70%3D&md5=a35073d700f8a0e5394847e9e5aec7a9CAS | 18227943PubMed |
[17] Y. Li, W. Zhang, J. Chang, J. Chen, G. Li, Y. Ju, Macromol. Chem. Phys. 2008, 209, 322.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXisFSguro%3D&md5=41d0ed77363ca5df572b8b28246eb9fdCAS |
[18] Z. Wang, C. Sun, G. Vegesna, H. Liu, Y. Liu, J. Li, X. Zheng, Biosens. Bioelectron. 2013, 46, 183.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmtVans7w%3D&md5=524f60c963d41125893fa20d6c4e146dCAS | 23563436PubMed |
[19] T. Thanpitcha, A. Sirivat, A. Jamieson, R. Rujiravanit, Carbohyd. Polym. 2006, 64, 560.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xlt12mu7Y%3D&md5=f24439081d5de03d64368151e3cb80e2CAS |
[20] V. Rostovtsev, L. Green, V. Fokin, K. B. Sharpless, Angew. Chem. Int. Ed. 2002, 41, 2596.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xls1Ohsr4%3D&md5=a7cb70cd3e268b3421cca3b9b998eff4CAS |
[21] H. Kolb, M. Finn, K. B. Sharpless, Angew. Chem. Int. Ed. 2001, 40, 2004.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXksVOis78%3D&md5=eb7c277b0aa77b3f1b0bf94365b61847CAS |
[22] J. Geng, G. Mantovani, L. Tao, J. Nicolas, G. Chen, R. Wallis, D. Mitchell, B. Johnson, S. Evans, D. Haddleton, J. Am. Chem. Soc. 2007, 129, 15156.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlWmu7%2FN&md5=5d363c6626d034c69ab16baafa543d8cCAS | 18020332PubMed |
[23] A. Baba, S. Tian, F. Stefani, C. Xia, Z. Wang, R. Advincula, D. Johannsman, W. Knoll, J. Electroanal. Chem. 2004, 562, 95.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhtVSqu7nE&md5=094210995a3bfdf36d63bf03e1b3728aCAS |
[24] E. M. Genies, M. Lapkowski, J. F. Penneau, J. Electroanal. Chem. 1988, 249, 2733.
[25] S. Pruneanu, E. Veress, I. Marian, L. Oniciu, J. Mater. Sci. 1999, 34, 2733.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjvFyltbc%3D&md5=8e1f877dc41942ca5b0899bade6d9043CAS |
[26] P. A. Kilmartin, G. A. Wright, Synthetic Met. 1999, 104, 145.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjsFOktrk%3D&md5=1c982258354aae5d8d5c92ed8cbee287CAS |
[27] S. Bhadra, N. Singha, D. Khastgir, Eur. Polym. J. 2008, 44, 1763.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmvVelu78%3D&md5=9a2b61ff68b2e1d3374dc09f24ee9c97CAS |
[28] J. Stejskal, M. Trchova, Polym. Int. 2012, 61, 240.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjtFKluw%3D%3D&md5=e339b286a4c6df9b67bb4b8460bd1a50CAS |
[29] M. Trchová, J. Stejskal, Pure Appl. Chem. 2011, 83, 1803.
| Crossref | GoogleScholarGoogle Scholar |
[30] M. Kanou, K. Nakanishi, A. Hashimoto, T. Kameoka, Appl. Spectrosc. 2005, 59, 885.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmtl2lurg%3D&md5=6809c419a3f3c225e16a9b58212b4b5bCAS | 16053559PubMed |
[31] H. Uzawa, H. Ito, M. Izumi, H. Tokuhisa, K. Taguchi, N. Minoura, Tetrahedron 2005, 61, 5895.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXks1SqtrY%3D&md5=46d62f2813fabd6bc2f9041d336a46beCAS |
[32] Y. E, L. Wan, X. Zhou, F. Huang, L. Du, Polym. Adv. Technol. 2012, 23, 1092.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXptVeitLs%3D&md5=bf3b7ac665ae276ada27a713657dceabCAS |
[33] S. Sun, P. Wu, J. Phys. Chem. A 2010, 114, 8331.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXptlynt78%3D&md5=07caf96252dc592689f3b94d36a7d888CAS | 20701340PubMed |
[34] D. Schweinfurth, R. Pattacini, S. Strobel, B. Sarkar, Dalton Trans. 2009, 42, 9291.
| Crossref | GoogleScholarGoogle Scholar | 20449208PubMed |
[35] J. Stejskal, P. Kratochvil, N. Radhakrishnana, Synthetic. Met. 1993, 61, 225.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXnvVWhtA%3D%3D&md5=e3bcb2a43e04ebd9514d0d5394febc0dCAS |
[36] K. Molapo, P. Ndangili, R. Ajayi, G. Mbambisa, S. Mailu, N. Njomo, M. Masikini, P. Baker, E. Iwuoha, Int. J. Electrochem. Sci. 2012, 7, 11859.
| 1:CAS:528:DC%2BC3sXktFE%3D&md5=4b40c7bff184b4dc965a0e6ddabf3100CAS |
[37] A. Sehgal, T. Seery, Macromolecules 1999, 32, 7807.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXms1ekurs%3D&md5=7ea769470ee76cfe1fa1374ffa8ce2f9CAS |
[38] Y. Gou, J. Geng, S. J. Richards, J. Burns, R. Becer, D. Haddleton, J. Polym. Sci. Pol. Chem. 2013, 51, 2588.
| 1:CAS:528:DC%2BC3sXjvVemt78%3D&md5=134b94ac9e3fe68ee2ba0dd1baf278bfCAS |
[39] N. Sharon, H. Lis, in Lectins, 2003, pp. 454, Kluwer Academic Publishers.
[40] C. Cairo, J. E. Gestwicki, M. Kanai, L. L. Kiessling, J. Am. Chem. Soc. 2002, 124, 1615.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xps1Wlsw%3D%3D&md5=992f1aafefb1e1c96dfc75c3d997f245CAS | 11853434PubMed |
[41] J. Stejskal, Pure Appl. Chem. 2002, 74, 857.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xlt1ajtL4%3D&md5=48d2a23ed3d2f9ea729ef90f65886b55CAS |
[42] J. Beignet, J. Tiernan, C. Woo, B. Kariuki, L. Cox, J. Org. Chem. 2004, 69, 6341.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXms1Oqu7o%3D&md5=4cb1c7431468112ee6ea0bce33a0c592CAS | 15357594PubMed |
[43] K. Yu, J. Kizhakkedathu, Biomacromolecules 2010, 11, 3073.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht12lt73E&md5=b0fd6d5c9da90520413f3df05e9d4bd6CAS |