Layered γ-Zirconium Phosphate Intercalated with Ru(bpy)3-Viologen Dyads as Unusual Materials for Dye-Sensitised Solar Cells: Improving Efficiency by Double Sensitisation
María de Victoria-Rodriguez A , Pedro Atienzar B , Olga Juanes A , Juan Carlos Rodríguez-Ubis A , Ernesto Brunet A C and Hermenegildo García B CA Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
B Instituto Universitario de Tecnología Química UPV-CSIC, Universidad Politécnica de Valencia, Av. de los Naranjos s/n, Valencia, Spain.
C Corresponding authors. Email: ernesto.brunet@uam.es; hgarcia@qim.upv.es
Australian Journal of Chemistry 67(3) 389-397 https://doi.org/10.1071/CH13451
Submitted: 11 September 2013 Accepted: 23 October 2013 Published: 25 November 2013
Abstract
The intercalation materials prepared from the laminar salt γ-zirconium phosphate and various dyads formed from Ru(bpy)3 and viologens were tested as photoactive components in dye-sensitised solar cells. The efficiencies significantly increased, up to 0.2 %, when the materials were treated with the panchromatic N535 dye. A mechanism for this double sensitisation process is proposed, which should enable further improvement of these γ-ZrP-based materials as a reasonable alternative to the usual Ti-based dye-sensitised solar cells.
References
[1] D. M. Poojary, B. Zhang, Y. Dong, G. Peng, A. Clearfield, J. Phys. Chem. 1994, 98, 13616.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXntFamtL0%3D&md5=15e4513db89081ece7a7dbc7ceeceebbCAS |
[2] E. Brunet, “How Laminar Zirconium Phosphates Can Make Organic Molecules Display New Behavior and Properties at the Supramolecular Level in the Solid State”, Chapter 9 (2012), 279–316; in Metal Phosphonate Chemistry, From Synthesis to Applications, (Abraham Clearfield, Kostantinos D. Demadis, Eds.) RSC Publishing.
[3] (a) E. Brunet, M. Huelva, R. Vázquez, O. Juanes, J. C. Rodríguez-Ubis, Chem. –Eur. J. 1996, 2, 1578.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXlsFektQ%3D%3D&md5=349c9fe874990a870c357a63b16fc9efCAS |
(b) Figure 2, path B E. Brunet, H. M. H. Alhendawi, O. Juanes, J. C. Rodríguez-Ubis, J. Mex. Chem. Soc. 2009, 53, 155.
(c) G. Alberti, E. Brunet, C. Dionigi, O. Juanes, M. J. de la Mata, J. C. Rodríguez-Ubis, R. Vivani, Angew. Chem. Int. Ed. 1999, 38, 3351.
| Crossref | GoogleScholarGoogle Scholar |
(d) E. Brunet, O. Juanes, M. J. de la Mata, J. C. Rodríguez-Ubis, Angew. Chem., Int. Ed. 2004, 43, 619.
(e) Figure 2, path C E. Brunet, M. J. de la Mata, H. M. H. Alhendawi, C. Cerro, M. Alonso, O. Juanes, J. C. Rodríguez-Ubis, Chem. Mater. 2005, 17, 1424.
| Crossref | GoogleScholarGoogle Scholar |
(f) E. Brunet, M. J. de la Mata, O. Juanes, H. M. H. Alhendawi, C. Cerro, J. C. Rodríguez-Ubis, Tetrahedron: Asymmetry 2006, 17, 347.
| Crossref | GoogleScholarGoogle Scholar |
(g) Figure 2, path D R. Fernández-Ruiz, J. C. Rodríguez-Ubis, A. Salvador, E. Brunet, O. Juanes, J. Anal. At. Spectrom. 2010, 25, 1882.
| Crossref | GoogleScholarGoogle Scholar |
(h) E. Brunet, O. Juanes, L. Jiménez, J. C. Rodríguez-Ubis, Tetrahedron Lett. 2009, 50, 5361.
| Crossref | GoogleScholarGoogle Scholar |
(i) E. Brunet, H. M. H. Alhendawi, O. Juanes, L. Jiménez, J. C. Rodríguez-Ubis, J. Mater. Chem. 2009, 19, 2494.
| Crossref | GoogleScholarGoogle Scholar |
(j) E. Brunet, M. J. de la Mata, O. Juanes, J. C. Rodríguez-Ubis, Chem. Mater. 2004, 16, 1517.
| Crossref | GoogleScholarGoogle Scholar |
(k) Figure 2, path E E. Brunet, M. Alonso, C. Cerro, O. Juanes, J. C. Rodríguez-Ubis, A. E. Kaifer, Adv. Funct. Mater. 2007, 17, 1603.
| Crossref | GoogleScholarGoogle Scholar |
(l) E. Brunet, M. Alonso, M. J. de la Mata, S. Fernández, O. Juanes, O. Chavanes, J. C. Rodríguez-Ubis, Chem. Mater. 2003, 15, 1232.
| Crossref | GoogleScholarGoogle Scholar |
(m) Figure 2, path F E. Brunet, H. M. H. Alhendawi, C. Cerro, M. J. de la Mata, O. Juanes, J. C. Rodríguez-Ubis, Microporous Mesoporous Mater. 2011, 138, 75.
| Crossref | GoogleScholarGoogle Scholar |
(n) E. Brunet, H. M. H. Alhendawi, C. Cerro, M. J. de la Mata, O. Juanes, J. C. Rodríguez-Ubis, Chem. Eng. J. 2010, 158, 333.
| Crossref | GoogleScholarGoogle Scholar |
(o) E. Brunet, C. Cerro, O. Juanes, J. C. Rodríguez-Ubis, A. Clearfield, J. Mater. Sci. 2008, 43, 1155.
| Crossref | GoogleScholarGoogle Scholar |
(p) E. Brunet, H. M. H. Alhendawi, C. Cerro, M. J. de la Mata, O. Juanes, J. C. Rodríguez-Ubis, Angew. Chem., Int. Ed. 2006, 45, 6918.
| Crossref | GoogleScholarGoogle Scholar |
(q) Figure 2, path G: unpublished results. Figure 2, path H H. M. H. Alhendawi, E. Brunet, E. Rodríguez-Payán, O. Juanes, J. C. Rodríguez-Ubis, M. Al-Asqalany, J. Incl. Phenom. Macrocycl. 2012, 73, 387.
| Crossref | GoogleScholarGoogle Scholar |
[4] (a) M. R. Hoffmann, S. T. Martin, W. Y. Choi, D. W. Bahnemann, Chem. Rev. 1995, 95, 69.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXjtF2qur4%3D&md5=a9e8c0a00b6d5e4c7314720c5181a359CAS |
(b) B. O’Regan, M. Gratzel, Nature 1991, 353, 737.
| Crossref | GoogleScholarGoogle Scholar |
(c) M. Grätzel, J. Photochem. Photobiol., A 2003, 4, 145.
| Crossref | GoogleScholarGoogle Scholar |
[5] E. Brunet, M. Alonso, M. C. Quintana, P. Atienzar, O. Juanes, J. C. Rodríguez-Ubis, H. García, J. Phys. Chem. C 2008, 112, 5699.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXit1yisLk%3D&md5=5889da585bc658fdb8c59e7a47ab516eCAS |
[6] L. Teruel, M. Alonso, M. C. Quintana, A. Salvador, O. Juanes, J. C. Rodriguez-Ubis, E. Brunet, H. García, Phys. Chem. Chem. Phys. 2009, 11, 2922.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXkt1equrs%3D&md5=b285236ee53fb446d4f7d7225bc34fceCAS | 19421507PubMed |
[7] P. Atienzar, M. Victoria-Rodríguez, O. Juanes, J. C. Rodríguez-Ubis, E. Brunet, H. García, Environ. Sci. 2011, 4, 4718.
| 1:CAS:528:DC%2BC3MXhsVyrtb%2FI&md5=a6b32e9d3b0f1916e0588f55da723cedCAS |
[8] (a) B. M. Peef, G. T. Ross, G. J. Meyer, T. J. Meyer, B. W. Erickson, Int. J. Pept. Prot. Res. 1991, 38, 114.
(b) L. Strekowski, J. L. Mokrosz, F. A. Tanious, R. A. Watson, D. Harden, M. Mokrosz, W. D. Edwards, W. D. Wilson, J. Med. Chem. 1988, 31, 1231.
| Crossref | GoogleScholarGoogle Scholar |