Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

A Facile Approach to Fabrication of Novel Magnetic Hydrogels Crosslinked by Multi-Functional Pomegranate-Like Nanospheres

Mengge Xia A , Yiheng Wang A , Yan Zhang A , Yanhua Cheng A , Shaohua Chen A , Ruili Wang A , Zhouqi Meng A and Meifang Zhu A B
+ Author Affiliations
- Author Affiliations

A State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, 2999 North People Road, Shanghai 201620, China.

B Corresponding author. Email: zmf@dhu.edu.cn




Professor Meifang Zhu received her Ph.D. in material science in 1999 from Donghua University (DHU), China. She visited Dresden University of Technology, Germany, as an assistant professor. She obtained her master's and bachelor's degrees in chemical fibre studies from China Textile University in 1988 and 1986, respectively. Since 1989, she has worked as an assistant teacher, an associate professor and a full professor in DHU, and she is the dean of the College of Material Science and Engineering. Her research group works on the development and characterization of organic/inorganic hybrid materials such as functional polymer fibres, nanocomposite hydrogels, and biomedical materials.

Australian Journal of Chemistry 67(1) 112-120 https://doi.org/10.1071/CH13365
Submitted: 11 July 2013  Accepted: 22 September 2013   Published: 1 November 2013

Abstract

A facile approach was explored to fabricate a novel magnetic hydrogel using pomegranate-like functional magnetic nanospheres (FMNs) as photoactive crosslinker and polyacrylamide as polymer matrix by photoinitiated free radical polymerization. These novel pomegranate-like FMNs were prepared by embedding Fe3O4 nanoparticles into polystyrene by miniemulsion polymerization. The effect of FMN concentration, acrylamide monomer molar concentration, polymerization time on the magnetic properties, morphology, swelling behaviour, and dynamic mechanical properties of magnetic hydrogels were systematically investigated. Our synthetic route expands the application of these materials in the fields of smart magnetic switches, targeted drug release, biomimetic sensors, and chemical devices.


References

[1]  D. Seliktar, Science 2012, 336, 1124.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XnsFOrtbw%3D&md5=d91c9a7023e2fdd78dbd3dd43c81e85eCAS | 22654050PubMed |

[2]  (a) Z. Hu, X. Zhang, Y. Li, Science 1995, 269, 525.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXntF2ksbo%3D&md5=18f0b4050d29eb96b7931e04e7b6b4e1CAS | 17842364PubMed |
      (b) Z. Hu, T. Cai, C. Chi, Soft Matter 2010, 6, 2115.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  S. Sun, P. Wu, J. Mater. Chem. 2011, 21, 4095.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXivFynsL8%3D&md5=0a5435898f14603713dab54eaea83b7eCAS |

[4]  J. Wei, Y. Yu, Soft Matter 2012, 8, 8050.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVCls7zE&md5=8dd5ad1d9069407f87011b7a7969f07fCAS |

[5]  (a) Y. Liu, M. Takafuji, H. Ihara, M. Zhu, M. Yang, K. Gu, W. Guo, Soft Matter 2012, 8, 3295.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjtVGjsL0%3D&md5=3b9fc36fa39abb590aa83678c2d25fddCAS |
      (b) N. Satarkar, J. Hilt, J. Control. Release 2008, 130, 246.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  Y. Osada, H. Okuzaki, H. Hori, Nature 1992, 355, 242.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XosFamtQ%3D%3D&md5=346ebfddbc58eb9392311a7bd6be6657CAS |

[7]  Y. Jiang, B. Li, X. Chen, M. Zhu, J. Appl. Polym. Sci. 2012, 125, E148.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1yrt7nK&md5=e4f67206b1f39cfb8697aeb00d6e1864CAS |

[8]  E. Ye, X. J. Loh, Aust. J. Chem. 2013, 66, 997.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVekt77P&md5=e86f9abbe4316e4cbfb038d9ee42f740CAS |

[9]  H. A. Ketelson, D. L. Meadows, R. P. Stone, Colloids Surf. B Biointerfaces 2005, 40, 1.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtFGhtLzE&md5=77f593d6b0104f3c923c8cbe69ced91eCAS | 15620833PubMed |

[10]  (a) C.-W. Chang, A. van Spreeuwel, C. Zhang, S. Varghese, Soft Matter 2010, 6, 5157.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1Cmu7fN&md5=3a46d92c828af54927b73b590d473c3cCAS |
      (b) A. K. Ekenseair, K. W. M. Boere, S. N. Tzouanas, T. N. Vo, F. K. Kasper, A. G. Mikos, Biomacromolecules 2012, 13, 1908.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  (a) J. A. Johnson, N. J. Turro, J. T. Koberstein, J. E. Mark, Prog. Polym. Sci. 2010, 35, 332.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhslWrsbk%3D&md5=0d3fd33d85161ca9fb6b0779b3ba3642CAS |
      (b) J. Y. Sun, X. Zhao, W. R. K. Illeperuma, O. Chaudhuri, K. H. Oh, D. J. Mooney, J. J. Vlassak, Z. Suo, Nature 2012, 489, 133.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) S. Naficy, H. R. Brown, J. M. Razal, G. M. Spinks, P. G. Whitten, Aust. J. Chem. 2011, 64, 1007.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  Y. Okumura, K. Ito, Adv. Mater. 2001, 13, 485.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjtVWktb4%3D&md5=54b16c90394fa7494765ddc53c6578b9CAS |

[13]  (a) K. Haraguchi, T. Takehisa, Adv. Mater. 2002, 14, 1120.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmsFyrurw%3D&md5=e143c58d75dc59c9b4ee518e557a67b2CAS |
      (b) K. Haraguchi, T. Takehisa, S. Fan, Macromolecules 2002, 35, 10162.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  J. Gong, Y. Katsuyama, T. Kurokawa, Y. Osada, Adv. Mater. 2003, 15, 1155.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmtFemu7k%3D&md5=c556d638bc60750248d7aa000a4aa040CAS |

[15]  T. Huang, H. Xu, K. Jiao, L. Zhu, H. R. Brown, H. Wang, Adv. Mater. 2007, 19, 1622.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnsVagsbw%3D&md5=530bf19db4b0c11dda436402f84fbdf2CAS |

[16]  M. Fukasawa, T. Sakai, U. Chung, K. Haraguchi, Macromolecules 2010, 43, 4370.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXkslKgsL8%3D&md5=6b4f7f9c2a8135868a7a0027231a7192CAS |

[17]  Y. J. Heo, H. Shibata, T. Okitsu, T. Kawanishi, S. Takeuchi, Proc. Natl. Acad. Sci. USA 2011, 108, 13399.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtV2ms7zJ&md5=f00a833be55a8128c583f4c343f0541dCAS | 21808049PubMed |

[18]  (a) K. Haraguchi, T. Takada, Macromolecules 2010, 43, 4294.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXksVKltr8%3D&md5=40f3edc23769fec82368511524e254e5CAS |
      (b) Y. Wu, M. Xia, Q. Fan, M. Zhu, Chem. Commun. 2010, 46, 7790.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) C. Lo, D. Zhu, H. Jiang, Soft Matter 2011, 7, 5604.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  C. Viklund, E. Pontén, B. Glad, K. Irgum, P. Hörstedt, F. Svec, Chem. Mater. 1997, 9, 463.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXntF2hsA%3D%3D&md5=c7560695d240ef440305497731f6042cCAS |

[20]  (a) A. Paulino, M. Guilherme, E. Almeida, A. Pereira, E. Muniz, E. Tambourgi, J. Magn. Magn. Mater. 2009, 321, 2636.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmsFKhs7g%3D&md5=7ff5637789386df58e3a2102471916b9CAS |
      (b) N. S. Satarkar, D. Biswal, J. Z. Hilt, Soft Matter 2010, 6, 2364.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  Y. Liang, L. Zhang, W. Jiang, W. Li, ChemPhysChem 2007, 8, 2367.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlKqtrfI&md5=75fd8bd00fa59ac941267b1973daa61dCAS | 17926314PubMed |

[22]  T. Liu, S. Hu, K. Liu, D. Liu, S. Chen, J. Magn. Magn. Mater. 2006, 304, e397.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XltVyiurk%3D&md5=671ce0d7697d95762e3ccc7d434dbfdeCAS |

[23]  R. Barbucci, G. Giani, S. Fedi, S. Bottari, M. Casolaro, Acta Biomater. 2012, 8, 4244.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1Gksb%2FE&md5=9c5e25db8e706579e7325825af9bf372CAS | 22982321PubMed |

[24]  Y. Liu, M. Zhu, X. Liu, W. Zhang, B. Sun, Y. Chen, H. J. P. Adler, Polymer 2006, 47, 1.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlCntr3F&md5=f3d33e480b8d3404d7a597b363198b4eCAS |

[25]  M. Zhu, Y. Liu, B. Sun, W. Zhang, X. Liu, H. Yu, Y. Zhang, D. Kuckling, H. J. P. Adler, Macromol. Rapid Commun. 2006, 27, 1023.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XnslCguro%3D&md5=da499edfd3dddc42522c2463998af915CAS |

[26]  W. Zhang, Y. Liu, M. Zhu, Y. Zhang, X. Liu, H. Yu, Y. Jiang, Y. Chen, D. Kuckling, H. J. P. Adler, J. Polym. Sci. A Polym. Chem. 2006, 44, 6640.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFOrsLrO&md5=212023e17902251e5acc938698dad4deCAS |

[27]  (a) H. Ren, M. Zhu, K. Haraguchi, Macromolecules 2011, 44, 8516.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1KktrfO&md5=326b8a67e52971e231e4ae4bfe3528acCAS |
      (b) H. Ren, M. Zhu, K. Haraguchi, J. Colloid Interface Sci. 2012, 375, 134.
         | Crossref | GoogleScholarGoogle Scholar |

[28]  B. Li, Y. Jiang, Y. Liu, Y. Wu, H. Yu, M. Zhu, J. Polym. Sci., B, Polym. Phys. 2009, 47, 96.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXis1Clug%3D%3D&md5=ddd1532840942f7d585b28a42992caaaCAS |

[29]  Y. Wu, Z. Zhou, Q. Fan, L. Chen, M. Zhu, J. Mater. Chem. 2009, 19, 7340.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1SqsLzF&md5=4fe4293f1fdfa8c2b323485c6010e6c8CAS |

[30]  S.-H. Huang, M.-H. Liao, D.-H. Chen, Biotechnol. Prog. 2003, 19, 1095.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjtVWnt7o%3D&md5=a55c73dce0cf85ece7aaaa86c8ba8ba9CAS | 12790688PubMed |

[31]  F. Yan, J. Li, J. Zhang, F. Liu, W. Yang, J. Nanopart. Res. 2009, 11, 289.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1antrY%3D&md5=df3280153314e4286e44a18dc22ed64bCAS |

[32]  (a) W. Zheng, F. Gao, H. Gu, J. Magn. Magn. Mater. 2005, 288, 403.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1Grt70%3D&md5=d7473373e04c9e454e5a12d4fd70ef42CAS |
      (b) K. Chen, Y. Zhu, Y. Zhang, L. Li, Y. Lu, X. Guo, Macromolecules 2011, 44, 632.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) L. Ramírez, K. Landfester, Macromol. Chem. Phys. 2003, 204, 22.
         | Crossref | GoogleScholarGoogle Scholar |

[33]  K. Landfester, L. P. Ramírez, J. Phys. Condens. Matter 2003, 15, S1345.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXktVGjsb8%3D&md5=75a2a58abe7c13923824a4733dee5026CAS |

[34]  A. K. Gupta, M. Gupta, Biomaterials 2005, 26, 3995.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXisFWr&md5=10e34f7bf5f030174c3cb81551ff9dceCAS | 15626447PubMed |

[35]  X. Guo, A. Weiss, M. Ballauff, Macromolecules 1999, 32, 6043.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXls1aisL0%3D&md5=7c44c4bc2263dfa302650d5b4fe751ceCAS |