Diastereoselective Pictet–Spengler Reactions of a Tethered 2-Aminoimidazole
Sudhir R. Shengule A and Peter Karuso A BA Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW 2109, Australia.
B Corresponding author. Email: peter.karuso@mq.edu.au
Australian Journal of Chemistry 67(2) 184-191 https://doi.org/10.1071/CH13346
Submitted: 3 July 2013 Accepted: 28 September 2013 Published: 8 November 2013
Abstract
The diastereoselective Pictet–Spengler reaction of aminopropyl-2-aminoimidazole with enantiopure aldehydes has been investigated. With amino acid-derived aldehydes, anti stereochemistry is favoured, with a diastereoselectivity up to 92 % achievable. The absolute stereochemistry of the products was determined through synthesis of a rigid derivative and from NMR data in combination with molecular modelling. The diastereoselectivity was shown to be dependent on the steric bulk of the amino acid side chain and independent of the nitrogen protecting group. Lewis acids catalysed the reaction but did not affect the diastereoselectivity.
References
[1] A. Pictet, T. Spengler, Ber. Dtsch. Chem. Ges. 1911, 44, 2030.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaC3MXitVWntA%3D%3D&md5=8e009efcc765204e3c893cabb231e771CAS |
[2] J. Stockigt, A. P. Antonchick, F.-R. Wu, H. Waldmann, Angew. Chem. Int. Ed. 2011, 50, 8538.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpvFaiu74%3D&md5=29dc2691c7dbbe8abd9c422873334ae6CAS |
[3] N. Gao, X. Ma, L. Petit, B. D. Schwartz, M. G. Banwell, A. C. Willis, I. A. Cade, A. D. Rae, Aust. J. Chem. 2013, 66, 30.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVylsb4%3D&md5=3dbc104b21e939daf0e6fca916430d19CAS |
[4] J. M. Humphrey, Y. Liao, A. Ali, T. Rein, Y.-L. Wong, H.-J. Chen, A. K. Courtney, S. F. Martin, J. Am. Chem. Soc. 2002, 124, 8584.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xks12rsLw%3D&md5=4ab776c2e0a3f1f90feef42e2d52712aCAS | 12121099PubMed |
[5] T. P. Lebold, J. L. Wood, J. Deitch, M. W. Lodewyk, D. J. Tantillo, R. Sarpong, Nat. Chem. 2013, 5, 126.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVOrurjK&md5=5a36187152b63fe88231ea7478c1a7aaCAS | 23344433PubMed |
[6] S. Zheng, C. Chan, T. Furuuchi, B. J. D. Wright, B. Zhou, J. Guo, S. J. Danishefsky, Angew. Chem. Int. Ed. 2006, 45, 1754.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XislSmu7g%3D&md5=e789a2cf7c47ac0344970846dd82ba3cCAS |
[7] (a) J. Tatsui, J. Pharm. Soc. Jpn. 1928, 48, 92.
(b) P. D. Bailey, J. Chem. Res., Synopses 1987, 202.
(c) P. Kowalski, A. J. Bojarski, J. L. Mokrosz, Tetrahedron 1995, 51, 2737.
| Crossref | GoogleScholarGoogle Scholar |
[8] H. Hoffmann, T. Lindel, Synthesis 2003, 1753.
| 1:CAS:528:DC%2BD3sXntlaktL8%3D&md5=6deece9353d413a4a2905c2f744870c2CAS |
[9] D. Heyl, S. A. Harris, K. Folkers, J. Am. Chem. Soc. 1948, 70, 3429.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaH1MXis1yl&md5=b92e3feb0c0b6218f70ac1a0f2e1afa7CAS | 18891880PubMed |
[10] (a) F. B. Stocker, M. W. Fordice, J. K. Larson, J. H. Thorstenson, J. Org. Chem. 1966, 31, 2380.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF28Xktlymsrg%3D&md5=50e37027423ea7878e2f991c3aef4ad3CAS |
(b) B. Kundu, D. Sawant, P. Partani, A. P. Kesarwani, J. Org. Chem. 2005, 70, 4889.
| Crossref | GoogleScholarGoogle Scholar |
(c) I. M. Piper, D. B. MacLean, R. Faggiani, C. J. L. Lock, W. A. Szarek, Can. J. Chem. 1985, 63, 2915.
| Crossref | GoogleScholarGoogle Scholar |
(d) F. Kar, A. Aydin, I. Tor, Chim. Acta Tur. 1993, 21, 141.
(e) R. K. Gautam, S. Fujii, M. Nishida, H. Kimoto, L. A. Cohen, J. Heterocycl. Chem. 1994, 31, 453.
| Crossref | GoogleScholarGoogle Scholar |
(f) T. Ohya, M. Niitsu, Biol. Pharm. Bull. 2003, 26, 1215.
| Crossref | GoogleScholarGoogle Scholar |
(g) K. Nagarajan, M. V. P. Arya, S. J. Shenoy, R. K. Shah, A. N. Goud, G. A. Bhat, Ind. J. Chem. B 1977, 15B, 629.
(h) R. L. Williams, S. Neergaard, J. Pharm. Sci. 1982, 71, 119.
| Crossref | GoogleScholarGoogle Scholar |
(i) B. Madrigal, P. Puebla, E. Caballero, R. Pelaez, D. G. Gravalos, M. Medarde, Arch Pharm 2001, 334, 177.
| Crossref | GoogleScholarGoogle Scholar |
(j) S. Fujii, Y. Maki, H. Kimoto, L. A. Cohen, J. Fluor. Chem. 1987, 35, 581.
| Crossref | GoogleScholarGoogle Scholar |
(k) G. Beke, L. F. Szabo, B. Podanyi, J. Nat. Prod. 2002, 65, 649.
| Crossref | GoogleScholarGoogle Scholar |
[11] (a) S. R. Shengule, P. Karuso, Org. Lett. 2006, 8, 4083.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XnsF2gtbw%3D&md5=674bedbf9e399bb594e379fd36f69496CAS | 16928079PubMed |
(b) S. R. Shengule, W. L. Loa-Kum-Cheung, C. R. Parish, M. Blairvacq, L. Meijer, Y. Nakao, P. Karuso, J. Med. Chem. 2011, 54, 2492.
| Crossref | GoogleScholarGoogle Scholar |
[12] Y. Ma, S. Nam, R. Jove, K. Yakushijin, D. A. Horne, Bioorg. Med. Chem. Lett. 2010, 20, 83.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsF2jsbjF&md5=186415ed88dd150d3d6fbea805a3aa9cCAS | 19948404PubMed |
[13] (a) J. P. Kutney, Nat. Prod. Rep. 1990, 7, 85.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXlvVOqtLY%3D&md5=9087528d16dd4796a8bb99173067df04CAS |
(b) J. Stoeckigt, M. H. Zenk, Chem. Commun. 1977, 646.
(c) R. T. Brown, L. R. Row, Chem. Commun. 1967, 453.
| Crossref | GoogleScholarGoogle Scholar |
(d) G. N. Smith, K. T. D. De Silva, D. King, Chem. Commun. 1971, 908.
(e) E. D. Cox, J. M. Cook, Chem. Rev. 1995, 95, 1797.
| Crossref | GoogleScholarGoogle Scholar |
(f) M. D. Rozwadowska, Heterocycles 1994, 39, 903.
| Crossref | GoogleScholarGoogle Scholar |
(g) M. Chrzanowska, M. D. Rozwadowska, Chem. Rev. 2004, 104, 3341.
| Crossref | GoogleScholarGoogle Scholar |
(h) J. D. Scott, R. M. Williams, Chem. Rev. 2002, 102, 1669.
| Crossref | GoogleScholarGoogle Scholar |
(i) B. E. A. Burm, C. Gremmen, M. J. Wanner, G. J. Koomen, Tetrahedron 2001, 57, 2039.
| Crossref | GoogleScholarGoogle Scholar |
(j) W. Jin, S. Metobo, R. M. Williams, Org. Lett. 2003, 5, 2095.
| Crossref | GoogleScholarGoogle Scholar |
(k) E. D. Cox, L. K. Hamaker, J. Li, P. Yu, K. M. Czerwinski, L. Deng, D. W. Bennett, J. M. Cook, J. Org. Chem. 1997, 62, 44.
| Crossref | GoogleScholarGoogle Scholar |
(l) A. Madrigal, M. Grande, C. Avendano, J. Org. Chem. 1998, 63, 2724.
| Crossref | GoogleScholarGoogle Scholar |
(m) P. D. Bailey, M. H. Moore, K. M. Morgan, D. I. Smith, J. M. Vernon, Tetrahedron Lett. 1994, 35, 3587.
| Crossref | GoogleScholarGoogle Scholar |
(n) I. M. McDonald, D. J. Dunstone, S. B. Kalindjian, I. D. Linney, C. M. R. Low, M. J. Pether, K. I. M. Steel, M. J. Tozer, J. G. Vinter, J. Med. Chem. 2000, 43, 3518.
| Crossref | GoogleScholarGoogle Scholar |
(o) E. D. Cox, J. Li, L. K. Hamaker, P. Yu, J. M. Cook, Chem. Commun. 1996, 2477.
| Crossref | GoogleScholarGoogle Scholar |
(p) T. S. Kaufman, in New Methods for the Asymmetric Synthesis of Nitrogen Heterocycles (Eds J. L. Vicario, D. Badía, L. Carrillo) 2005, pp. 99–147 (Research Signpost: Trivandrum, India).
(q) T. Kawate, H. Yamada, T. Soe, M. Nakagawa, Tetrahedron Asymmetry 1996, 7, 1249.
| Crossref | GoogleScholarGoogle Scholar |
(r) H. Yamada, T. Kawate, M. Matsumizu, A. Nishida, K. Yamaguchi, M. Nakagawa, J. Org. Chem. 1998, 63, 6348.
| Crossref | GoogleScholarGoogle Scholar |
(s) M. S. Taylor, E. N. Jacobsen, J. Am. Chem. Soc. 2004, 126, 10558.
| Crossref | GoogleScholarGoogle Scholar |
(t) T. Hino, M. Nakagawa, Heterocycles 1998, 49, 499.
| Crossref | GoogleScholarGoogle Scholar |
(u) Y. S. Lee, D. J. Cho, S. N. Kim, J. H. Choi, H. Park, J. Org. Chem. 1999, 64, 9727.
| Crossref | GoogleScholarGoogle Scholar |
(v) R. K. Manna, P. Jaisankar, V. S. Giri, Synth. Commun. 1995, 25, 3027.
| Crossref | GoogleScholarGoogle Scholar |
(w) S. G. Pyne, Chem. Commun. 1986, 1686.
(x) S. G. Pyne, S. L. Chapman, Chem. Commun. 1986, 1688.
(y) A. W. M. Lee, W. H. Chan, Y. Tao, Y. K. Lee, J. Chem. Soc., Perkin Trans. 1 1994, 477.
| Crossref | GoogleScholarGoogle Scholar |
(z) J. Liu, M. Nakagawa, T. Hino, Tetrahedron 1989, 45, 7729.
| Crossref | GoogleScholarGoogle Scholar |
({) J. Liu, M. Nakagawa, K. Ogata, T. Hino, Chem. Pharm. Bull. (Tokyo) 1991, 39, 1672.
| Crossref | GoogleScholarGoogle Scholar |
(|) J. McNulty, I. W. J. Still, Synth. Commun. 1992, 22, 979.
| Crossref | GoogleScholarGoogle Scholar |
(}) J. D. Winkler, J. M. Axten, J. Am. Chem. Soc. 1998, 120, 6425.
| Crossref | GoogleScholarGoogle Scholar |
(~) J. McNulty, I. W. J. Still, Tetrahedron Lett. 1991, 32, 4875.
| Crossref | GoogleScholarGoogle Scholar |
[14] (a) E. Davioud, A. Petit, M. E. Tate, M. H. Ryder, J. Tempe, Phytochem. 1988, 27, 2429.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXmt1Klurw%3D&md5=f13c151f4c8aeff3c2945f62f5773356CAS |
(b) A. Isogai, N. Fukuchi, M. Hayashi, H. Kamada, H. Harada, A. Suzuki, Phytochem. 1990, 29, 3131.
| Crossref | GoogleScholarGoogle Scholar |
[15] (a) A. Olofson, K. Yakushijin, D. A. Horne, J. Org. Chem. 1998, 63, 1248.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXnsVWrsw%3D%3D&md5=aa607f8089807929e456ad9084962b57CAS |
(b) D. A. Horne, K. Yakushijin, U.S. Patent 98-185831 2000.
[16] C. F. Stanfield, J. E. Parker, P. Kanellis, J. Org. Chem. 1981, 46, 4797.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXlvVKktbs%3D&md5=6d807946653f073cc41fc0684c2f580cCAS |
[17] F. Diness, J. Beyer, M. Meldal, QSAR Comb. Sci. 2004, 23, 130.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXks1ymu7k%3D&md5=02e3b5dd78a7ce4fade800bc72d70ff0CAS |
[18] P. Ducrot, C. Rabhi, C. Thal, Tetrahedron 2000, 56, 2683.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjtVemtbg%3D&md5=49eb4ac4fa98be8f493ccbcd57e5c9b8CAS |
[19] Encyclopedia of Reagents for Organic Synthesis, 1st edn (Eds L. A. Paquette, D. Crich, P. L. Fuchs, G. A. Molander) 2005 (John Wiley: Chichester).
[20] C. A. G. Haasnoot, F. A. A. M. De Leeuw, C. Altona, Tetrahedron 1980, 36, 2783.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXht1Sgu7g%3D&md5=e1397d80fc659c102d5b74117ea94797CAS |
[21] (a) A. A. Bothner-By, R. L. Stephens, J. Lee, C. D. Warren, R. W. Jeanloz, J. Am. Chem. Soc. 1984, 106, 811.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXmvVKhtw%3D%3D&md5=a486ca89488e968382a85e6635036848CAS |
(b) A. Bax, D. G. Davis, J. Magn. Reson. 1985, 63, 207.
(c) C. Griesinger, R. R. Ernst, J. Magn. Reson. 1987, 75, 261.
[22] (a) M. J. Haas, D. J. Cichowicz, W. Jun, K. Scott, J. Am. Oil Chem. Soc. 1995, 72, 519.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXls1OrsL4%3D&md5=9d0f81fd4e252ff022afc39928bcc868CAS |
(b) J. Stonehouse, P. Adell, J. Keeler, A. J. Shaka, J. Am. Chem. Soc. 1994, 116, 6037.
| Crossref | GoogleScholarGoogle Scholar |
[23] (a) L. Kay, P. Keifer, T. Saarinen, J. Am. Chem. Soc. 1992, 114, 10663.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXjt1eg&md5=5aae04ad2c728478ae31a747e398f342CAS |
(b) J. Schleucher, M. Schwendinger, M. Sattler, P. Schmidt, O. Schedletzky, S. J. Glaser, O. W. Sørensen, C. Griesinger, J. Biomol. NMR 1994, 4, 301.
| Crossref | GoogleScholarGoogle Scholar |
[24] (a) S. Barlow, A. L. Rohl, S. Shi, C. M. Freeman, D. O’Hare, J. Am. Chem. Soc. 1996, 118, 7578.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XksVKls7g%3D&md5=21b94ba7e90d09b5d917252fcf79eeb7CAS |
(b) T. A. Halgren, J. Comput. Chem. 1996, 17, 490.
| Crossref | GoogleScholarGoogle Scholar |