Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

The Influence of Secondary Structure on Electron Transfer in Peptides

Jingxian Yu A B , John R. Horsley A and Andrew D. Abell A B
+ Author Affiliations
- Author Affiliations

A School of Chemistry and Physics, The University of Adelaide, Adelaide, SA 5005, Australia.

B Corresponding authors. Email: jingxian.yu@adelaide.edu.au; andrew.abell@adelaide.edu.au

Australian Journal of Chemistry 66(8) 848-851 https://doi.org/10.1071/CH13276
Submitted: 30 May 2013  Accepted: 16 July 2013   Published: 29 July 2013

Abstract

A series of synthetic peptides containing 0–5 α-aminoisobutyric acid (Aib) residues and a C-terminal redox-active ferrocene was synthesised and their conformations defined by NMR and circular dichroism. Each peptide was separately attached to an electrode for subsequent electrochemical analysis in order to investigate the effect of peptide chain length (distance dependence) and secondary structure on the mechanism of intramolecular electron transfer. While the shorter peptides (0–2 residues) do not adopt a well defined secondary structure, the longer peptides (3–5 residues) adopt a helical conformation, with associated intramolecular hydrogen bonding. The electrochemical results on these peptides clearly revealed a transition in the mechanism of intramolecular electron transfer on transitioning from the ill-defined shorter peptides to the longer helical peptides. The helical structures undergo electron transfer via a hopping mechanism, while the shorter ill-defined structures proceeded via an electron superexchange mechanism. Computational studies on two β-peptides PCB-(β3Val-β3Ala-β3Leu)n–NHC(CH3)2OOtBu (n = 1 and 2; PCB = p-cyanobenzamide) were consistent with these observations, where the n = 2 peptide adopts a helical conformation and the n = 1 peptide an ill-defined structure. These combined studies suggest that the mechanism of electron transfer is defined by the extent of secondary structure, rather than merely chain length as is commonly accepted.


References

[1]  Y. Arikuma, H. Nakayama, T. Morita, S. Kimura, Langmuir 2011, 27, 1530.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVGktL%2FJ&md5=bf6f11887f0309fcc92983d59a152baeCAS | 21090665PubMed |

[2]  G. P. Smestad, M. Gratzel, J. Chem. Educ. 1998, 75, 752.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjtlajtb8%3D&md5=5ff7664051868f51edfc064ca4de0b74CAS |

[3]  P. A. Brooksby, K. H. Anderson, A. J. Downard, A. D. Abell, Langmuir 2010, 26, 1334.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1WktLnO&md5=d02c9bdea561590bd0a12044f33824a4CAS | 19799404PubMed |

[4]  Y. T. Long, E. Abu-Rhayem, H. B. Kraatz, Chem. – Eur. J. 2005, 11, 5186.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVCgsbzO&md5=d1367e59410527e9f4e405167afdee31CAS | 15977279PubMed |

[5]  J. J. Davis, D. A. Morgan, C. L. Wrathmell, D. N. Axford, J. Zhao, N. Wang, J. Mater. Chem. 2005, 15, 2160.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXks1Cjsro%3D&md5=620e4842fd6460db22e1390efbbdcdbdCAS |

[6]  Y.-S. Chen, M.-Y. Hong, G. S. Huang, Nat. Nanotechnol. 2012, 7, 197.
         | Crossref | GoogleScholarGoogle Scholar | 22367097PubMed |

[7]  B. Giese, J. Amaudrut, A. K. Kohler, M. Spormann, S. Wessely, Nature 2001, 412, 318.
         | Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3MvhtF2isA%3D%3D&md5=75623591c92af6d959eb63042917b94fCAS | 11460159PubMed |

[8]  R. A. Malak, Z. N. Gao, J. F. Wishart, S. S. Isied, J. Am. Chem. Soc. 2004, 126, 13888.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXot1Wns7k%3D&md5=eb2332a00e1f4f7ed4a9997800fb75b3CAS | 15506726PubMed |

[9]  F. Polo, S. Antonello, F. Formaggio, C. Toniolo, F. Maran, J. Am. Chem. Soc. 2005, 127, 492.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtFCitbbO&md5=8d49985e90826b549f145e977e04e291CAS | 15643851PubMed |

[10]  J. Yu, O. Zvarec, D. M. Huang, M. A. Bissett, D. B. Scanlon, J. G. Shapter, A. D. Abell, Chem. Commun. 2012, 48, 1132.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XivVOiug%3D%3D&md5=85330fdcf189b1ab87a69d7546de9519CAS |

[11]  D. F. Kennedy, M. Crisma, C. Toniolo, D. Chapman, Biochemistry 1991, 30, 6541.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXkt1Ggs7g%3D&md5=07a02d14628fae9959b5889100b05d40CAS | 2054352PubMed |

[12]  O. S. Wenger, Acc. Chem. Res. 2011, 44, 25.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht12ju73F&md5=e153c12a2a6fedc473993b80ef59b9a5CAS | 20945886PubMed |

[13]  J. Yu, D. M. Huang, J. G. Shapter, A. D. Abell, J. Phys. Chem. C 2012, 116, 26608.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsleqtbzJ&md5=721e949ec12f290d7e6f2c7f02e48743CAS |

[14]  R. P. Cheng, S. H. Gellman, W. F. DeGrado, Chem. Rev. 2001, 101, 3219.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXntlGntbg%3D&md5=0e6dbd37f94caedfe78a857ab8d9c51aCAS | 11710070PubMed |

[15]  D. S. Daniels, E. J. Petersson, J. X. Qiu, A. Schepartz, J. Am. Chem. Soc. 2007, 129, 1532.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXns1Ohsw%3D%3D&md5=4a3260686209b22a101881e1120712b1CAS | 17283998PubMed |

[16]  C. M. Goodman, S. Choi, S. Shandler, W. F. DeGrado, Nat. Chem. Biol. 2007, 3, 252.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXkt1Kjs7w%3D&md5=3ed67326b8fa938d555d0f829ae7318fCAS | 17438550PubMed |

[17]  J. A. Kritzer, J. Tirado-Rives, S. A. Hart, J. D. Lear, W. L. Jorgensen, A. Schepartz, J. Am. Chem. Soc. 2005, 127, 167.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVOjtrbJ&md5=43cc9e888a0ae3eaac1f6a0027ed0e19CAS | 15631466PubMed |

[18]  D. Seebach, J. Gardiner, Acc. Chem. Res. 2008, 41, 1366.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnvVKksrk%3D&md5=33c21c21a5475b2959af065f668fc118CAS | 18578513PubMed |

[19]  P. A. Brooksby, K. H. Anderson, A. J. Downard, A. D. Abell, J. Phys. Chem. C 2011, 115, 7516.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjvFaqsLc%3D&md5=bfd9da47fb741b77116105d4e700540bCAS |

[20]  A. D. Pehere, A. D. Abell, Org. Lett. 2012, 14, 1330.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XisVGht7g%3D&md5=b093f0eb2487d6b0aa7954c9d954d719CAS | 22339212PubMed |

[21]  A. D. Abell, M. A. Jones, J. M. Coxon, J. D. Morton, S. G. Aitken, S. B. McNabb, H. Y. Y. Lee, J. M. Mehrtens, N. A. Alexander, B. G. Stuart, A. T. Neffe, R. Bickerstaff, Angew. Chem. Int. Ed. 2009, 48, 1455.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXisFCltrs%3D&md5=556aee4c73a91226dbaee5a4d0f3c370CAS |

[22]  R. I. Mathad, B. Jaun, O. Floegel, J. Gardiner, M. Loeweneck, J. D. C. Codee, P. H. Seeberger, D. Seebach, M. K. Edmonds, F. H. M. Graichen, A. D. Abell, Helv. Chim. Acta 2007, 90, 2251.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFOqtLo%3D&md5=f8acef01612f8078471e57f9183c85aeCAS |