Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Cu32-Cl)3 and Ag32-Cl)3 Complexes Supported by Tetradentate Trisphosphino-stibine and -bismuthine Ligands: Structural Evidence for Triply Bridging Heavy Pnictines

Iou-Sheng Ke A and François P. Gabbaï A B
+ Author Affiliations
- Author Affiliations

A Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA.

B Corresponding author. Email: francois@tamu.edu

Australian Journal of Chemistry 66(10) 1281-1287 https://doi.org/10.1071/CH13260
Submitted: 21 May 2013  Accepted: 2 July 2013   Published: 19 August 2013

Abstract

The tetradentate stibine and bismuthine ligands (o-(iPr2P)C6H4)3Sb (LSbP3) and (o-(iPr2P)C6H4)3Bi (LBiP3) react with CuCl and AgCl in THF at room temperature to afford (o-(iPr2P)C6H4)3SbCu32-Cl)3 (1), (o-(iPr2P)C6H4)3SbAg32-Cl)3 (2), (o-(iPr2P)C6H4)3BiCu32-Cl)3 (3), and (o-(iPr2P)C6H4)3BiAg32-Cl)3 (4), respectively. These complexes, which have been fully characterised, feature a central M32-Cl)3 cluster (M = Cu or Ag) supported by coordination of a LSbP3- or LBiP3-phosphino group to each group 11 metal ion. The heavy pnictogen atom (Pn) interacts simultaneously with the three group 11 metal ions of the M32-Cl)3 cluster leading to formation of a tetrahedral PnM3 core. Bonding analysis using the Natural Bond Orbital method indicates the presence of a four-centre two-electron Pn→M3 interaction whose strength is the highest in 1 and the lowest in 4. The triply bridging bonding mode of the stibine and bismuthine ligands observed in these complexes is, to our knowledge, unprecedented. We also note that the central M32-Cl)3 clusters found in these complexes are related to the cyclo-trimers observed in vapours of CuCl and AgCl.


References

[1]  (a) W. Levason, C. A. McAuliffe, Acc. Chem. Res. 1978, 11, 363.
         | 1:CAS:528:DyaE1cXlt12mt7s%3D&md5=87fdac78f9fcbefadbec70257a65e61dCAS |
      (b) W. Levason, G. Reid, Coord. Chem. Rev. 2006, 250, 2565.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  (a) N. A. Compton, R. J. Errington, N. C. Norman, Adv. Organomet. Chem. 1990, 31, 91.
         | 1:CAS:528:DyaK3MXhvVGmtbc%3D&md5=6ad81e20d1d59654f2895fcf1bdf6cd2CAS |
      (b) C. Silvestru, H. J. Breunig, H. Althaus, Chem. Rev. 1999, 99, 3277.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) M. Mehring, Coord. Chem. Rev. 2007, 251, 974.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  (a) C. R. Wade, I.-S. Ke, F. P. Gabbaï, Angew. Chem. Int. Ed. 2012, 51, 478.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFeqtrrI&md5=772f76a63879646642f3791086ee2a2cCAS |
      (b) W. Levason, C. A. McAuliffe, S. G. Murray, J. Organomet. Chem 1975, 88, 171.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) L. Baracco, C. A. McAuliffe, J. Chem. Soc., Dalton Trans. 1972, 948.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) B. R. Higginson, C. A. McAuliffe, L. M. Venanzi, Inorg. Chim. Acta 1971, 5, 37.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) J. W. Dawson, L. M. Venanzi, J. Am. Chem. Soc. 1968, 90, 7229.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  C. R. Wade, F. P. Gabbaï, Angew. Chem. Int. Ed. 2011, 50, 7369.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXotFCksr4%3D&md5=4042f6c15e9844b0f36a0e1a582af60aCAS |

[5]  (a) T.-P. Lin, I.-S. Ke, F. P. Gabbaï, Angew. Chem. Int. Ed. 2012, 51, 4985.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XkvVGmsLs%3D&md5=7311d8b520dfecea2b0d363cda98208aCAS |
      (b) C. Tschersich, C. Limberg, S. Roggan, C. Herwig, N. Ernsting, S. Kovalenko, S. Mebs, Angew. Chem. Int. Ed. 2012, 51, 4989.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  I.-S. Ke, F. P. Gabbai, Inorg. Chem. 2013, 52, 7145.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXotV2msLs%3D&md5=5fdb4908ef138d72507ab57cfdc65791CAS | 23701632PubMed |

[7]  C.-h. Wong, V. Schomaker, J. Phys. Chem. 1957, 61, 358.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG2sXlsFSisg%3D%3D&md5=5307617bdb433b82ae6fad57658d9741CAS |

[8]  M. Hargittai, P. Schwerdtfeger, B. Réffy, R. Brown, Chemistry 2003, 9, 327.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmvFOkuw%3D%3D&md5=5c9125287be990146ec79d69d423b4c3CAS | 12506389PubMed |

[9]  K. M. Anderson, A. G. Orpen, Chem. Commun. 2001, 0, 2682.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXpt1yisbw%3D&md5=be2ae83d89d9d780dfeaf8e4ff66e161CAS |

[10]  T. P. Martin, H. Schaber, J. Chem. Phys. 1980, 73, 3541.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXmsVOlsbo%3D&md5=e6a6b6325310923ebdb8a4b30d2813a4CAS |

[11]  A. C. Tsipis, A. V. Stalikas, Inorg. Chem. 2012, 51, 2541.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XktVKguw%3D%3D&md5=b0053d7f8bfd19923b0b6196b6dc0cd8CAS | 22229767PubMed |

[12]  H. Werner, Angew. Chem. Int. Ed. 2004, 43, 938.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhslGjtrg%3D&md5=ab6e0d7a024f8d02ef5701e68e028223CAS |

[13]  A. Rheingold, M. Fountain, J. Crystallogr. Spectrosc. Res. 1984, 14, 549.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXjslagsw%3D%3D&md5=5271012b247b45bcd6a7d0b10b0cb62bCAS |

[14]  G. A. Bowmaker, R. D. Effendy, J. D. Hart, B. W. Kildea, E. N. d. Skelton, A. H. Silva, White, Aust. J. Chem. 1997, 50, 539.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmtlGgtrw%3D&md5=98e64f2cd375cca5b26c565db5202fe9CAS |

[15]  R. D. Hart, G. A. Bowmaker, E. N. d. Silva, B. W. Skelton, A. H. White, Aust. J. Chem. 1997, 50, 621.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  (a) B. Cordero, V. Gomez, A. E. Platero-Prats, M. Reves, J. Echeverria, E. Cremades, F. Barragan, S. Alvarez, Dalton Trans. 2008, 2832.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlvFKrurY%3D&md5=8519ef94d6bb04ba68b99eda49a82c81CAS | 18478144PubMed |
      (b) P. Pyykkö, M. Atsumi, Chemistry 2009, 15, 186.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  J. D. Effendy, A. H. Kildea, White, Aust. J. Chem. 1997, 50, 587.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmtlGgtrg%3D&md5=2d4026b032616471414260fa8372dc39CAS |

[18]  A. M. Hill, W. Levason, M. Webster, Inorg. Chem. 1996, 35, 3428.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xis1ygtLc%3D&md5=ffec89da50bbd225a263689aee2675feCAS | 11666548PubMed |

[19]  G. A. Bowmaker, E. N. d. Effendy, A. H. Silva, White, Aust. J. Chem. 1997, 50, 641.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmtlGgt74%3D&md5=943b338192f0b2a54bd90227c987261dCAS |

[20]  E. D. Glendening, J. K. Badenhoop, A. E. Reed, J. E. Carpenter, J. A. Bohmann, C. M. Morales, F. Weinhold; NBO 5.9 (http://www.chem.wisc.edu/˜nbo5) & the NBO 5.9 Manual, Theoretical Chemistry Institute, University of Wisconsin, Madison, WI.

[21]  A. E. Reed, L. A. Curtiss, F. Weinhold, Chem. Rev. 1988, 88, 899.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXmtlOitbw%3D&md5=002c8ee1b3351926b1bad6e05a6c8cd9CAS |

[22]  (a) A. Kuczkowski, S. Schulz, M. Nieger, P. R. Schreiner, Organometallics 2002, 21, 1408.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhsF2itbg%3D&md5=511671b645b2c8f65ade1f47b72d4a05CAS |
      (b) A. Kuczkowski, S. Fahrenholz, S. Schulz, M. Nieger, Organometallics 2004, 23, 3615.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  A. L. Balch, B. J. Davis, M. M. Olmstead, Inorg. Chem. 1993, 32, 3937.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXlsFWju7g%3D&md5=e427ee86b3cb3a566f461733892cc0dcCAS |

[24]  J. C. Green, M. L. H. Green, G. Parkin, Chem. Commun. 2012, 48, 11481.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1WisrbI&md5=326e935acf2aa6d41c04d17001d6ae15CAS |

[25]  G. M. Sheldrick, SHELXTL Version 6.1; Bruker Analytical X-ray Systems, Inc., Madison, WI.

[26]  M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. Montgomery, J. A.; J. E. Peralta; F. Ogliaro; M. Bearpark; J. J. Heyd; E. Brothers; K. N. Kudin; V. N. Staroverov; R. Kobayashi; J. Normand; K. Raghavachari; A. Rendell; J. C. Burant; S. S. Iyengar; J. Tomasi; M. Cossi; N. Rega; J. M. Millam; M. Klene; J. E. Knox; J. B. Cross; V. Bakken; C. Adamo; J. Jaramillo; R. Gomperts; R. E. Stratmann; O. Yazyev; A. J. Austin; R. Cammi; C. Pomelli; J. W. Ochterski; R. L. Martin; K. Morokuma; V. G. Zakrzewski; G. A. Voth; P. Salvador; J. J. Dannenberg; S. Dapprich; A. D. Daniels; Ö. Farkas; J. B. Foresman; J. V. Ortiz; J. Cioslowski; D. J. Fox, Gaussian09. Gaussian 09, Revision B.01, 2009 (Gaussian, Inc.: Wallingford, CT)

[27]  (a) A. D. Becke, Phys. Rev. A 1988, 38, 3098.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXmtlOhsLo%3D&md5=2a3bc3989fac96c88d548336c5199bd8CAS | 9900728PubMed |
      (b) J. P. Perdew, Phys. Rev. B 1986, 33, 8822.
         | Crossref | GoogleScholarGoogle Scholar |

[28]  D. Figgen, G. Rauhut, M. Dolg, H. Stoll, Chem. Phys. 2005, 311, 227.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhvF2hurs%3D&md5=9140f1e80b38e79a93b2c245dcae181cCAS |

[29]  H. Stoll, B. Metz, M. Dolg, J. Comput. Chem. 2002, 23, 767.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xjs1Wnsbo%3D&md5=472e4fc35196a4eb7950623d040c99bcCAS | 12012353PubMed |

[30]  Manson  J.Webster  C. E.Pérez  L. M.Hall  M. B., http://www.chem.tamu.edu/jimp2/index.html.