The Fifth Element in Drug Design: Boron in Medicinal Chemistry
Jan Kahlert A , Christopher J. D. Austin A , Michael Kassiou A and Louis M. Rendina A BA School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia.
B Corresponding author. Email: lou.rendina@sydney.edu.au
Australian Journal of Chemistry 66(10) 1118-1123 https://doi.org/10.1071/CH13256
Submitted: 15 May 2013 Accepted: 4 June 2013 Published: 15 July 2013
Abstract
The unique chemistry of boron allows for the utilisation of novel building-blocks which are not traditionally found in medicinal chemistry. The pharmaceutical industry has begun to exploit boronic acid derivatives as new drugs and several research groups are also exploring 1,2-azaborines and icosahedral boranes known as carboranes as boron-based structural motifs, with great promise for innovative drug design. Recent advances in the medicinal chemistry of these three important boron moieties are highlighted and illustrated with selected examples.
References
[1] T. Pennington, Med. Hist. 1995, 39, 35.| Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2M7ot1Ojtg%3D%3D&md5=99e8f3b0a32668551ffffccef9f0c106CAS | 7877404PubMed |
[2] W. G. Woods, Environ. Health Perspect. 1994, 102, 5.
| 1:CAS:528:DyaK2MXjsVaht7o%3D&md5=a278f380cb4adb3bb2fcd2ca1c3b6c5cCAS | 7889881PubMed |
[3] S. J. Baker, C. Z. Ding, T. Akama, Y. K. Zhang, V. Hernandez, Y. Xia, Future. Med. Chem. 2009, 1, 1275.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlOisL7E&md5=f47cf447e7c8be42828efa03196841f3CAS | 21426103PubMed |
[4] R. N. Grimes, Carboranes, 2nd edn 2011 (Elsevier: London).
[5] M. F. Hawthorne, O. K. Farha, R. Julius, L. Ma, S. S. Jalisatgi, T. Li, M. J. Bayer, Modern Aspects of Main Group Chemistry (Eds M. Lattman, R. A. Kemp) 2005, Vol. 917, pp. 312–324 (American Chemical Society: Washington, DC).
[6] M. A. Fox, Comprehensive Organometallic Chemistry III (Eds R. H. Crabtree, D. M. P. Mingos), 2007, pp. 49–112 (Elsevier: Amsterdam).
[7] V. M. Dembitsky, R. Smoum, A. A. Al-Quntar, H. A. Ali, I. Pergament, M. Srebnik, Plant Sci. 2002, 163, 931.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XosFeqsbg%3D&md5=468c89a5fb6455a5dd3442ce523354e0CAS |
[8] X. Chen, S. Schauder, N. Potier, A. Van Dorsselaer, I. Pelczer, B. L. Bassler, F. M. Hughson, Nature 2002, 415, 545.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xht1Ghtbw%3D&md5=5e67ea1e41c8eb7e18e907b957cf5eb2CAS | 11823863PubMed |
[9] P. C. Trippier, C. McGuigan, Med. Chem. Comm. 2010, 1, 183.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVymt7vO&md5=70047b87eadbb428a52b66ec656d0ac5CAS |
[10] P. G. Richardson, B. Barlogie, J. Berenson, S. Singhal, S. Jagannath, D. Irwin, S. V. Rajkumar, G. Srkalovic, M. Alsina, R. Alexanian, N. Engl. J. Med. 2003, 348, 2609.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXkvVSksLs%3D&md5=a6f237b9012cace6575d8ed9e8581bddCAS | 12826635PubMed |
[11] R. Piva, B. Ruggeri, M. Williams, G. Costa, I. Tamagno, D. Ferrero, V. Giai, M. Coscia, S. Peola, M. Massaia, Blood 2008, 111, 2765.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXivFaktbk%3D&md5=2d79ef4ba7a456783327f32d0c9d37c1CAS | 18057228PubMed |
[12] K. Narra, S. R. Mullins, H.-O. Lee, B. Strzemkowski-Brun, K. Magalong, V. J. Christiansen, P. A. McKee, B. Egleston, S. J. Cohen, L. M. Weiner, Cancer Biol. Ther. 2007, 6, 1691.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXkt1Whsb8%3D&md5=f44b44dcf98b0bc7c358e6c95c5735e2CAS | 18032930PubMed |
[13] A. Boloor, D. Hanway, M. Joshi, D. T. Winn, G. Mendez, M. Walls, P. Wei, F. Qian, X. Zhang, Y. Zhang, Bioorg. Med. Chem. Lett. 2009, 19, 5708.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFakur3O&md5=e4a04f1ceff3d2b6ed7260ed3ec4aaeeCAS | 19713109PubMed |
[14] R. Baggio, D. Elbaum, Z. F. Kanyo, P. J. Carroll, R. C. Cavalli, D. E. Ash, D. W. Christianson, J. Am. Chem. Soc. 1997, 119, 8107.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXlt1yktL8%3D&md5=eb15d2a604939bf62e102b88279f04b2CAS |
[15] J. D. Cox, N. N. Kim, A. M. Traish, D. W. Christianson, Nat. Struct. Mol. Biol. 1999, 6, 1043.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXnt1Grurc%3D&md5=fb398bf3a55283e5c572595963222e47CAS |
[16] G. S. Weston, J. Blázquez, F. Baquero, B. K. Shoichet, J. Med. Chem. 1998, 41, 4577.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmsFWkt74%3D&md5=69795d31a68fad1d2b7e31f772769287CAS | 9804697PubMed |
[17] N. Ni, H.-T. Chou, J. Wang, M. Li, C.-D. Lu, P. C. Tai, B. Wang, Biochem. Biophys. Res. Commun. 2008, 369, 590.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjs12gu74%3D&md5=cfe9469bceb4406bea101645ee85df6dCAS | 18295599PubMed |
[18] S. Touchet, F. Carreaux, B. Carboni, A. Bouillon, J.-L. Boucher, Chem. Soc. Rev. 2011, 40, 3895.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXns12ntbs%3D&md5=2aaf4196a2792a5795a056bac00611d1CAS | 21431144PubMed |
[19] M. Elofsson, U. Splittgerber, J. Myung, R. Mohan, C. M. Crews, Chem. Biol. 1999, 6, 811.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXnsVGmsrg%3D&md5=cf05e63f90539a779122ac001ce776b9CAS | 10574782PubMed |
[20] X. Hui, S. J. Baker, R. C. Wester, S. Barbadillo, A. K. Cashmore, V. Sanders, K. M. Hold, T. Akama, Y. K. Zhang, J. J. Plattner, J. Pharm. Sci. 2007, 96, 2622.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFKrtLbM&md5=fb2d9b4fe713a1265e80240a89a23781CAS | 17621679PubMed |
[21] F. L. Rock, W. Mao, A. Yaremchuk, M. Tukalo, T. Crépin, H. Zhou, Y.-K. Zhang, V. Hernandez, T. Akama, S. J. Baker, Science 2007, 316, 1759.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXms1Wgsbo%3D&md5=474ecab8d9ff51aa6f890ef41f425510CAS | 17588934PubMed |
[22] E. Seiradake, W. Mao, V. Hernandez, S. J. Baker, J. J. Plattner, M. Alley, S. Cusack, J. Mol. Biol. 2009, 390, 196.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnt1Kisbw%3D&md5=25daf9081e851225c0cd994b003802f5CAS | 19426743PubMed |
[23] P. G. Campbell, A. J. Marwitz, S. Y. Liu, Angew. Chem. Int. Ed. Engl. 2012, 51, 6074.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xns1Wktb0%3D&md5=ed5c024656c27d361282b73c64c1abc3CAS | 22644658PubMed |
[24] A. J. Marwitz, M. H. Matus, L. N. Zakharov, D. A. Dixon, S. Y. Liu, Angew. Chem. Int. Ed. Engl. 2009, 48, 973.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhs1yktLY%3D&md5=5f898aaa1d49ca13affa9d3743fe67c7CAS | 19105174PubMed |
[25] L. Liu, A. J. Marwitz, B. W. Matthews, S. Y. Liu, Angew. Chem. Int. Ed. Engl. 2009, 48, 6817.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVOrtr3J&md5=b1a2814bf6caba167425a571b08db385CAS | 19688806PubMed |
[26] D. H. Knack, J. L. Marshall, G. P. Harlow, A. Dudzik, M. Szaleniec, S. Y. Liu, J. Heider, Angew. Chem. Int. Ed. Engl. 2013, 52, 2599.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVOlt7k%3D&md5=8699970da798b236e148b4072c90ffdcCAS | 23355270PubMed |
[27] E. R. Abbey, S. Y. Liu, Org. Biomol. Chem. 2013, 11, 2060.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjsFOisr8%3D&md5=4cbddaffc54238d8b350a097cf17d90fCAS | 23403937PubMed |
[28] P. R. Schleyer, K. Najafian, Inorg. Chem. 1998, 37, 3454.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjvFymsbc%3D&md5=44363975407d3f2c1754e8075e9ff843CAS | 11670428PubMed |
[29] R. B. King, Chem. Rev. 2001, 101, 1119.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhsFKhtLg%3D&md5=b06733a4ecc6e3cbacc16fd3066ad284CAS | 11710215PubMed |
[30] I. B. Sivaev, V. V. Bregadze, Eur. J. Inorg. Chem. 2009, 1433.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlsVWksbc%3D&md5=3633b29ba51c140fcc59b957e99c338cCAS |
[31] E. L. Crossley, E. J. Ziolkowski, J. A. Coderre, L. M. Rendina, Mini Rev. Med. Chem. 2007, 7, 303.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXitVOitLw%3D&md5=6f0cfc7ee08f3c2319cecb21169f0d7bCAS | 17346220PubMed |
[32] J. F. Valliant, K. J. Guenther, A. S. King, P. Morel, P. Schaffer, O. O. Sogbein, K. A. Stephenson, Coord. Chem. Rev. 2002, 232, 173.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XntF2kur8%3D&md5=b0149b2c6801feb3d20d7a4abbb21bfeCAS |
[33] Z. J. Lesnikowski, Collect. Czech. Chem. Commun. 2007, 72, 1646.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsV2kt78%3D&md5=ad3b059c6f4fd72cc2015875f624632dCAS |
[34] K. Yamamoto, Y. Endo, Bioorg. Med. Chem. Lett. 2001, 11, 2389.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmt12js74%3D&md5=9a6873578d5c302b1d6aca1201aa56f8CAS | 11527738PubMed |
[35] V. N. Kalinin, V. A. Ol’shevskaya, Russ. Chem. Bull. Int. Ed. 2008, 57, 815.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjvFWqu7s%3D&md5=c7140bc303fc7666fd6a80cb8ac2a7f6CAS |
[36] M. Scholz, E. Hey-Hawkins, Chem. Rev. 2011, 111, 7035.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXptlSltb8%3D&md5=1cec5b6f9577f3b0097def707abf376bCAS | 21780840PubMed |
[37] F. Issa, M. Kassiou, L. M. Rendina, Chem. Rev. 2011, 111, 5701.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXotlaiu70%3D&md5=8529268d2ab0549ceb7714e4444eac62CAS | 21718011PubMed |
[38] M. Laube, W. Neumann, M. Scholz, P. Lonnecke, B. Crews, L. J. Marnett, J. Pietzsch, T. Kniess, E. Hey-Hawkins, ChemMedChem 2013, 8, 329.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXltVWqsg%3D%3D&md5=224463d84421a6ed58fd9866653250dbCAS | 23303738PubMed |
[39] M. W. Lee, Y. V. Sevryugina, A. Khan, S. Q. Ye, J. Med. Chem. 2012, 55, 7290.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFOru77N&md5=0a1e5dd10751dcdfb98ac01d88e29b8eCAS | 22889195PubMed |
[40] S. Fujii, H. Masuno, Y. Taoda, A. Kano, A. Wongmayura, M. Nakabayashi, N. Ito, M. Shimizu, E. Kawachi, T. Hirano, Y. Endo, A. Tanatani, H. Kagechika, J. Am. Chem. Soc. 2011, 133, 20933.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVarsr3O&md5=47041a587df5d760df64d68f745c7703CAS | 22066785PubMed |
[41] H. Nakamura, Y. Yasui, M. Maruyama, H. Minegishi, H. S. Ban, S. Sato, Bioorg. Med. Chem. Lett. 2013, 23, 806.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvFWhu77M&md5=651547f9514d00edad06f2c3173c8e41CAS | 23267767PubMed |
[42] E. L. Crossley, F. Issa, A. M. Scarf, M. Kassiou, L. M. Rendina, Chem. Commun. 2011, 47, 12179.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtl2ntb%2FJ&md5=cb1b06e17d05e4b7be9a9b09ea7ac57cCAS |
[43] H. Nakamura, A. Shoji, A. Takeuchi, H. S. Ban, J.-D. Lee, T. Yamori, S. O. Kang, Aust. J. Chem. 2011, 64, 1430.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVOqu77O&md5=08604b8233f4880239e4770bcf99f46dCAS |
[44] K. Bednarska, A. B. Olejniczak, A. Piskala, M. Klink, Z. Sulowska, Z. J. Lesnikowski, Bioorg. Med. Chem. 2012, 20, 6621.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFSjsr%2FM&md5=e419d26b61d63d55f852cee11b717c49CAS | 23063523PubMed |
[45] K. Ohta, T. Ogawa, Y. Endo, Bioorg. Med. Chem. Lett. 2012, 22, 4728.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XosVaqsbc%3D&md5=e286647d72dc51e453161b8695157d5cCAS | 22695130PubMed |
[46] K. Ohta, T. Goto, S. Fujii, M. Kawahata, A. Oda, S. Ohta, K. Yamaguchi, S. Hirono, Y. Endo, Bioorg. Med. Chem. 2011, 19, 3540.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmvFWmt7Y%3D&md5=46ec5566ef2a6718a669146fa258caefCAS | 21536446PubMed |
[47] S. Fujii, A. Yamada, K. Tomita, M. Nagano, T. Goto, K. Ohta, T. Harayama, Y. Endo, H. Kagechika, Med. Chem. Commun. 2011, 2, 877.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFSmt7bM&md5=9977b72c868c2ce8f87c3445e2c7e386CAS |
[48] S. Li, C. Wu, X. Lv, X. Tang, X. Zhao, H. Yan, H. Jiang, X. Wang, Sci. China Chem. 2012, 55, 2388.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1OntrnN&md5=13cdd1ad5ff7bc865664b89a3515f2e0CAS |
[49] S. Li, Z. Wang, Y. Wei, C. Wu, S. Gao, H. Jiang, X. Zhao, H. Yan, X. Wang, Biomaterials 2013, 34, 902.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs12ksbnJ&md5=3d34fd61017e099a49c9e16222689848CAS | 23174143PubMed |
[50] G. Zhang, C. Wu, H. Ye, H. Yan, X. Wang, J. Nanobiotechnology 2011, 9, 6.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjslKnur8%3D&md5=1c86b4a611e6607bf86727fa887ee214CAS | 21338526PubMed |
[51] C. Wu, H. Ye, W. Bai, Q. Li, D. Guo, G. Lv, H. Yan, X. Wang, Bioconjug. Chem. 2011, 22, 16.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFKqtbvF&md5=c9b9153ea9039a72c89b96ddaac75a11CAS | 21162536PubMed |
[52] H. Dou, W. Zhong, L. Yang, T. Wang, H. Yan, Y. Hou, Bioorg. Med. Chem. 2012, 20, 4693.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XpvFGisL4%3D&md5=f43b7439589a6e8ac0980caaa2ed30c5CAS | 22763368PubMed |
[53] A. F. Armstrong, J. F. Valliant, Dalton Trans. 2007, 4240.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVOrt7bF&md5=85d2f8b02f2061d200e60e6744f48988CAS | 17893811PubMed |
[54] M. F. Hawthorne, A. Pushechnikov, Pure Appl. Chem. 2012, 84, 2279.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsFagur0%3D&md5=9a18f506a700cb8bd970281aa5e4170bCAS |
[55] M. Calvaresi, F. Zerbetto, J. Chem. Inf. Model. 2011, 51, 1882.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpvVyht7g%3D&md5=6d4f38ecf295c3e629021165a768d43bCAS | 21774557PubMed |
[56] J. Rosén, J. Gottfries, S. Muresan, A. Backlund, T. I. Oprea, J. Med. Chem. 2009, 52, 1953.
| Crossref | GoogleScholarGoogle Scholar | 19265440PubMed |
[57] W. P. Walters, J. Green, J. R. Weiss, M. A. Murcko, J. Med. Chem. 2011, 54, 6405.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFWjsr7O&md5=7e6d30b12289bcb7353763de978dfdf2CAS | 21755928PubMed |
[58] A. H. Lipkus, Q. Yuan, K. A. Lucas, S. A. Funk, W. F. Bartelt, R. J. Schenck, A. J. Trippe, J. Org. Chem. 2008, 73, 4443.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmtlylu7c%3D&md5=f5824a9c4e05d8e9f86670568aad6176CAS | 18505297PubMed |
[59] M. D. Burke, E. M. Berger, S. L. Schreiber, Science 2003, 302, 613.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXotlWqtrc%3D&md5=5bd833d8f42eeb668c90711d4aa55329CAS | 14576427PubMed |