Complexation of Crystal Violet, Pyronine B, and Rhodamine B by Linked β-Cyclodextrin Trimers
Hanh-Trang Nguyen A , Duc-Truc Pham A , Christopher J. Easton B and Stephen F. Lincoln A CA School of Chemistry and Physics, University of Adelaide, Adelaide, SA 5005, Australia.
B Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia.
C Corresponding author. Email: stephen.lincoln@adelaide.edu.au
Australian Journal of Chemistry 66(9) 1057-1064 https://doi.org/10.1071/CH13172
Submitted: 10 April 2013 Accepted: 3 June 2013 Published: 1 July 2013
Abstract
The host-guest complexation by β-cyclodextrin (βCD), 1,3,5-N,N,N-tris-(6A-deoxy-6A-β-cyclodextrin)-benzene (βCD3bz), and 1,3,5-N,N,N-tris(6A-(2-aminoethyl)amino-6A-deoxy-6A-β-cyclodextrin)-benzene (βCDen3bz) of cationic crystal violet (CV+) and pyronine B (PB+) and zwitterionic rhodamine B (RB) in aqueous phosphate buffer at pH 7.0 and I = 0.10 mol dm–3 has been studied by UV-Vis and 1H NMR spectroscopy. The complexation constants 10–3K1 (298.2 K) are 4.68, 86.3, and 7.08 dm3 mol–1 for the 1 : 1 host-guest complexes: βCD.CV+, βCD3bz.CV+, βCDen3bz.CV+, respectively, and those for the analogous PB+ and RB complexes have also been determined. The associated ΔHo and TΔSo for all nine complexes coincide with an entropy-enthalpy compensation plot for the formation of a wide range of βCD and modified βCD host-guest complexes reported in the literature. Crystal violet also forms (βCD)2.CV+, (βCD3bz)2.CV+ and (βCDen3bz)2.CV+ complexes characterised by 10–2K2 (298.2 K) = 2.14, 4.57, and 3.86 dm3 mol–1 and analogous (βCD)2.PB+, (βCDen3bz)2.PB+ and (βCDen3bz)2.RB complexes also form, but the (βCD3bz)2.PB+, (βCD)2.RB, and (βCD3bz)2.RB complexes were not detected. The effects of the structures of the hosts and guests on the complexation processes are discussed.
References
[1] M. V. Rekharsky, Y. Inoue, Chem. Rev. 1998, 98, 1875.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXksV2itbg%3D&md5=7787bf48e05fdff4fac1a0c8468eca8bCAS | 11848952PubMed |
[2] C. J. Easton, S. F. Lincoln, Modified Cyclodextrins: Scaffolds and Templates for Supramolecular Chemistry 1999 (Imperial College Press: London).
[3] A. Harada, Acc. Chem. Res. 2001, 34, 456.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXktl2rurc%3D&md5=d44a934e5771cce1e9d2d1fe7cb04bb7CAS | 11412082PubMed |
[4] F. Hapiot, S. Tilloy, E. Monflier, Chem. Rev. 2006, 106, 767.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xhs1Citb0%3D&md5=4b025d4d2cdc2207c403389eaa18608eCAS | 16522008PubMed |
[5] A. Harada, A. Hashidzume, H. Yamaguchi, Y. Takashima, Chem. Rev. 2009, 109, 5974.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtV2mtb%2FM&md5=841c4be0ca2b8a13235d9eb52b5c8c11CAS | 19736930PubMed |
[6] F. Yhaya, A. M. Gregory, M. H. Stenzel, Aust. J. Chem. 2010, 63, 195.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXisVagtro%3D&md5=f947fed6982f600f4427fe49f5d381a3CAS |
[7] L. Marchetti, M. Levine, ACS Catal. 2011, 1, 1090.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVegt7%2FP&md5=9f2d9cd5054cb947ecb6bb201fd06c57CAS |
[8] S. F. Lincoln, D.-T. Pham, Cyclodextrins: From Nature to Nanotechnology, in Supramolecular Chemistry: From Molecules to Nanomaterials (Eds P. A. Gale, J. W. Steed) 2012, Vol. 3, Ch.10, pp. 955–981 (Wiley: Chichester).
[9] E. M. M. Del Valle, Process Biochem. 2004, 39, 1033.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjtl2lurg%3D&md5=f206411ebc30899918c96fcc94e6758bCAS |
[10] L. Szente, J. Szejtli, Trends Food Sci. Technol. 2004, 15, 137.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhsV2ntL4%3D&md5=1c8fda907fd0ef14022712bff45a3228CAS |
[11] K. Tobitsuka, M. Miura, S. Kobayashi, J. Agric. Food Chem. 2005, 53, 5402.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXks1Kgsrk%3D&md5=29b779a66a48700449e5a1e25bf384caCAS | 15969526PubMed |
[12] G. Cravotto, A. Binello, E. Baranelli, P. Carraro, F. Trotta, Curr. Nutrit. Food Sci. 2006, 2, 343.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtF2rurjF&md5=07f210bbe3d5d50760c1c1ff311596ebCAS |
[13] G. Astray, C. Gonzalez-Barreiro, J. C. Mejuto, R. Rial-Otero, J. Simal-Gándara, Food Hydrocoll. 2009, 23, 1631.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmsFKnur0%3D&md5=f0559ca90d1594598539864371835863CAS |
[14] M. E. Davis, M. E. Brewster, Nat. Rev. Drug Discov. 2004, 3, 1023.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVarsL3P&md5=a47b2cbba88601132bfe11b0be2da53dCAS | 15573101PubMed |
[15] M. E. Brewster, T. Loftsson, Adv. Drug Deliv. Rev. 2007, 59, 645.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpsFGks7g%3D&md5=2155933990687a47328240ef8166ce87CAS | 17601630PubMed |
[16] T. Loftsson, D. Duchêne, Int. J. Pharm. 2007, 329, 1.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlCmtLrF&md5=e28a071d01b1811ae768c0d338347e77CAS | 17137734PubMed |
[17] F. van de Manakker, T. Vermonden, C. F. van Nostrum, W. E. Hennink, Biomacromolecules 2009, 10, 3157.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsValurzM&md5=5c65a12d3606c265dec6c659fb4deac0CAS | 19921854PubMed |
[18] T. Loftsson, D. Hreinsdóttir, E. Stefánsson, J. Pharm. Pharmacol. 2007, 59, 629.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXls1ygs7o%3D&md5=188295ddcd92101067693faafac5d6b3CAS | 17524227PubMed |
[19] H.-T. Nguyen, D.-T. Pham, S. F. Lincoln, J. Wang, X. Guo, C. J. Easton, R. K. Prud’homme, Polym. Chem. 2013, 4, 820.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjtl2nsg%3D%3D&md5=a3b3013318b42cda8464e45ad07d35d8CAS |
[20] R. L. Schiller, J. H. Coates, S. F. Lincoln, J. Chem. Soc., Farad. Trans. 1 1984, 80, 1257.(annular radii should read annular diameters in this reference).
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXlslSgs7g%3D&md5=bb5df1b13efa381b29abe75fbb433c07CAS |
[21] R. L. Schiller, S. F. Lincoln, J. H. Coates, J. Chem. Soc., Farad. Trans. 1 1986, 82, 2123.(annular radii should read annular diameters in this reference)
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XlslCgurk%3D&md5=6cd569160e7829f93a5bd9d9912ce61cCAS |
[22] S. F. Lincoln, J. H. Coates, R. L. Schiller, J. Incln. Phenom 1987, 5, 709.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXltV2ktbc%3D&md5=2736c7c9a2a7be8f4a64908db2469738CAS |
[23] D. Harries, D. C. Rau, V. A. Parsegian, J. Am. Chem. Soc. 2005, 127, 2184.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXntFGqug%3D%3D&md5=287174431e70e5d173cd6a7d500bd85eCAS | 15713096PubMed |
[24] Y. Liu, Y. Chen, Acc. Chem. Res. 2006, 39, 681.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmsVKmsbg%3D&md5=167bbc9ff910156af3bb0f19404ea4d0CAS | 17042468PubMed |
[25] E. Grunwald, C. Steel, J. Am. Chem. Soc. 1995, 117, 5687.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXls1yqsLo%3D&md5=8e3d0c45a2341db66d2a511fd694e978CAS |
[26] L. Liu, Q.-X. Guo, Chem. Rev. 2001, 101, 673.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXosV2rug%3D%3D&md5=1240082ee662bcbdf0dd7413e52f8d7bCAS | 11712500PubMed |
[27] T. K. Dam, C. F. Brewer, Chem. Rev. 2002, 102, 387.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlvFSnsA%3D%3D&md5=6fcb14c785173dbf9af966a7abaaa2baCAS | 11841248PubMed |
[28] H. Schneider, F. Hacket, V. Rudiger, Chem. Rev. 1998, 98, 1755.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXksV2iur0%3D&md5=280f50e01969c999a33a98a12e337220CAS | 11848948PubMed |
[29] ChemBio3D Ultra 2007 (CambridgeSoft: Cambridge).
[30] MOPAC2012 2012 (Stewart Computational Chemistry: Colorado Springs, CO).
[31] C. Long, E. J. King, W. M. Sperry, Biochemist’s Handbook 1961 (Spon: London).
[32] P. Gans, A. Sabatini, A. Vacca, Talanta 1996, 43, 1739.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XlvVWrsb0%3D&md5=f0b5c8b7e898509f0b07f71619776c3fCAS | 18966661PubMed |
[33] HypSpec (Protonic Software: Leeds). Available at www.hyperquad.co.uk