A Copper Cyanide Complex with Efficient Red Luminescence
Xi Liu A B , Yun-Zhi Yang A , Chun-Hai Wang A and Kun-Lin Huang AA College of Chemistry, Chongqing Normal University, Chongqing 400047, China.
B Corresponding author. Email: xliu@cqnu.edu.cn
Australian Journal of Chemistry 66(8) 989-992 https://doi.org/10.1071/CH13143
Submitted: 25 January 2013 Accepted: 4 July 2013 Published: 23 July 2013
Abstract
Gaseous diffusion of diethyl ether into the solvothermal reaction mixture of copper cyanide (CuCN) with 2,2′-bipyridine (bipy) in anhydrous acetonitrile leads to a copper cyanide complex Cu(CN)(bipy) (1) with a special helical chain structure. Solid-state luminescence experiments show that complex 1 can emit efficient red luminescence, and its possible emission mechanism was investigated in detail based on theoretical calculations. The results may be helpful for the design and synthesis of more efficient luminescent materials.
References
[1] B. J. Hathaway, in Comprehensive Coordination Chemistry (Ed. G. Wilkinson) 1987, Vol. 5, pp. 533–774 (Pergamon: Oxford).[2] (a) M. J. Zaworotko, Chem. Soc. Rev. 1994, 23, 283.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXmsVajt7g%3D&md5=e55bc9fc21d27754fe3a0f5f48ee0f51CAS |
(b) O. M. Yaghi, H. Li, C. Davis, D. Richardson, T. L. Groy, Acc. Chem. Res. 1998, 31, 474.
| Crossref | GoogleScholarGoogle Scholar |
(c) H. Gudbjartson, K. Biradha, K. M. Poirier, M. J. Zaworotko, J. Am. Chem. Soc. 1999, 121, 2599.
| Crossref | GoogleScholarGoogle Scholar |
(d) M. Kondo, T. Okubo, A. Asami, S. Noro, T. Yoshitomi, S. Kitagawa, T. Ishii, H. Matsuzaka, K. Seki, Angew. Chem. Int. Ed. 1999, 38, 140.
| Crossref | GoogleScholarGoogle Scholar |
(e) D. M. L. Goodgame, D. A. Grachvogel, D. J. Williams, Angew. Chem. Int. Ed. 1999, 38, 153.
| Crossref | GoogleScholarGoogle Scholar |
(f) G. A. Bowmaker, H. Hartl, V. Urban, Inorg. Chem. 2000, 39, 4548.
| Crossref | GoogleScholarGoogle Scholar |
(g) S. J. Hibble, S. G. Eversfield, A. R. Cowley, A. M. Chippindale, Angew. Chem. Int. Ed. 2004, 43, 628.
| Crossref | GoogleScholarGoogle Scholar |
[3] N. Krause, A. Gerold, Angew. Chem. Int. Ed. 1997, 36, 186.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhsVWrsLw%3D&md5=5ca7df816fadc44aeb001da87d8e53caCAS |
[4] N. A. Khan, N. Baber, M. Z. Iqbal, M. Mazhar, Chem. Mater. 1993, 5, 1283.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXls1ynt70%3D&md5=3a5d87f6018f42a01414b0ffe8a7c25cCAS |
[5] (a) B. F. Hoskins, R. Robson, J. Am. Chem. Soc. 1990, 112, 1546.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXovVOjtw%3D%3D&md5=52271add077e4b21cbba9770652a658fCAS |
(b) A. K. Brimah, E. Siebel, R. D. Fischer, N. A. Davies, D. C. Apperley, R. K. Harris, J. Organomet. Chem. 1994, 475, 85.
| Crossref | GoogleScholarGoogle Scholar |
(c) H. Yuge, T. Iwamoto, J. Inclus. Phenom. Mol. 1996, 26, 119.
| Crossref | GoogleScholarGoogle Scholar |
(d) L. C. Brousseau, D. Williams, J. Kouvetakis, M. O’Keefe, J. Am. Chem. Soc. 1997, 119, 6292.
| Crossref | GoogleScholarGoogle Scholar |
(e) R. D. Pike, Organometallics 2012, 31, 7647.
| Crossref | GoogleScholarGoogle Scholar |
[6] (a) A. Horváth, K. L. Stevenson, Inorg. Chim. Acta 1991, 186, 61.
| Crossref | GoogleScholarGoogle Scholar |
(b) A. Horváth, K. L. Stevenson, Inorg. Chem. 1993, 32, 2225.
| Crossref | GoogleScholarGoogle Scholar |
(c) A. Horváth, C. E. Wood, K. L. Stevenson, Inorg. Chem. 1994, 33, 5351.and references therein.
| Crossref | GoogleScholarGoogle Scholar |
[7] (a) X. Liu, G.-C. Guo, A.-Q. Wu, L.-Z. Cai, J.-S. Huang, Inorg. Chem. 2005, 44, 4282.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXktF2ku78%3D&md5=a3cbde57e042879293e54b0ce6ba6d02CAS | 15934757PubMed |
(b) X. Liu, G.-C. Guo, M.-L. Fu, J.-P. Zou, F.-Q. Zheng, J.-S. Huang, Inorg. Chim. Acta 2006, 359, 1643.
| Crossref | GoogleScholarGoogle Scholar |
(c) X. Liu, G.-C. Guo, Cryst. Growth Des. 2008, 8, 776.
| Crossref | GoogleScholarGoogle Scholar |
(d) X. Liu, G.-C. Guo, Aust. J. Chem. 2008, 61, 481.
| Crossref | GoogleScholarGoogle Scholar |
(e) X. Liu, K.-N. Zhao, G. Xu, G.-C. Guo, Chinese J. Struct. Chem. 2010, 29, 1524.
[8] E. Cariati, X. Bu, P. C. Ford, Chem. Mater. 2000, 12, 3385.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXnt1Kjsrw%3D&md5=c08bca919535dc12f15488c18ab58ab8CAS |
[9] X. He, C.-Z. Lu, D.-Q. Yuan, S.-M. Chen, J.-T. Chen, Eur. J. Inorg. Chem. 2005, 2181.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmsV2nsrs%3D&md5=f82cf3e2dcaaedfda7ccf4ee2703de2eCAS |
[10] H. Mao, C. Zhang, C. Xu, H. Zhang, X. Shen, B. Wu, Y. Zhu, Q. Wu, H. Wang, Inorg. Chim. Acta 2005, 358, 1934.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhvF2lu7s%3D&md5=72414a79fae3948e315d6f97308e6987CAS |
[11] B. Yan, V. O. Golub, A. Lachgar, Inorg. Chim. Acta 2006, 359, 118.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlCntLzI&md5=85c3300bf72fcbcdfca2f8660af0838aCAS |
[12] A. L. Spek, J. Appl. Cryst. 2003, 36, 7.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXltlChtw%3D%3D&md5=7ef7d36c64ac20944777b8342be85945CAS |
[13] (a) L. Yong, S. D. Hoffmann, T. F. Fässler, S. Riedel, M. Kaupp, Angew. Chem. Int. Ed. 2005, 44, 2092.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjt1Cqtbw%3D&md5=0504ffc3ca2a39ecf26e0b3dc94ad88cCAS |
(b) X. Liu, G.-C. Guo, M.-L. Fu, W.-T. Chen, M.-S. Wang, J.-S. Huang, Inorg. Chem. 2006, 45, 3679.
| Crossref | GoogleScholarGoogle Scholar |
(c) X. Liu, G.-C. Guo, M.-L. Fu, W.-T. Chen, J.-Z. Zhang, J.-S. Huang, Dalton Trans. 2006, 884.
| Crossref | GoogleScholarGoogle Scholar |