‘Classical’ and ‘Abnormal’ Bonding in Tin (ii) N-Heterocyclic Carbene Complexes
Robert S. P. Turbervill A and Jose M. Goicoechea A BA Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK.
B Corresponding author. Email: jose.goicoechea@chem.ox.ac.uk
Australian Journal of Chemistry 66(10) 1131-1137 https://doi.org/10.1071/CH13115
Submitted: 8 March 2013 Accepted: 2 April 2013 Published: 26 April 2013
Abstract
Reaction of Sn(OTf)2 (OTf– = OSO2CF3–) with one and two equivalents of the N-heterocyclic carbene (NHC) 1,3-bis(2,6-diisopropylphenyl)-imidazol-2-ylidene (IPr) yielded the complexes [Sn(IPr)(OTf)2] (1) and [Sn(IPr)(aIPr)(OTf)][OTf] (2), respectively. Both species were characterised by single crystal X-ray diffraction, multi-element NMR spectroscopy, and elemental analysis. Both compounds display an NHC ligand bonded to the tin(ii) metal centre via the C2 carbon in a ‘classical’ mode, while 2 also contains an ‘abnormal’ C4/C5-bonded carbene (aIPr). These observations highlight the subtle steric and electronic effects affecting the coordination modes of these ligands. Solution phase NMR experiments on 1 and 2 reveal complex behaviour resulting in the protonation of the IPr ligands to yield the 1,3-bis(2,6-diisopropylphenyl)-imidazolium cation via an unidentified reaction mechanism.
References
[1] (a) P. P. Power, Nature 2010, 463, 171.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXntVGgtQ%3D%3D&md5=44070bb27c1ad83e0a1295fcceb16074CAS | 20075912PubMed |
(b) D. W. Stephan, G. Erker, Angew. Chem. Int. Ed. 2010, 49, 46.
| Crossref | GoogleScholarGoogle Scholar |
(c) D. Martin, M. Soleilhavoup, G. Bertrand, Chem. Sci. 2011, 2, 389.
| Crossref | GoogleScholarGoogle Scholar |
[2] G. H. Spikes, J. C. Fettinger, P. P. Power, J. Am. Chem. Soc. 2005, 127, 12232.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXotFSiu7s%3D&md5=cfeb003a4c80ba979ee8ba8a38231c0aCAS | 16131195PubMed |
[3] G. D. Frey, V. Lavallo, B. Donnadieu, W. W. Scholler, G. Bertrand, Science 2007, 316, 439.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXktlSkurw%3D&md5=10bb8ebfd463a07b977563892c75e9fdCAS | 17446400PubMed |
[4] G. C. Welch, R. R. S. Juan, J. D. Masuda, D. W. Stephan, Science 2006, 314, 1124.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1SmtrjI&md5=86069f49632bfd89bc3bf71dd4951268CAS | 17110572PubMed |
[5] P. A. Chase, G. C. Welch, T. Jurca, D. W. Stephan, Angew. Chem. Int. Ed. 2007, 46, 8050.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1Knsr3F&md5=b9dc1065ba1ca8fd77678b45d1a3c6a0CAS |
[6] N. L. Dunn, M. Ha, A. T. Radosevich, J. Am. Chem. Soc. 2012, 134, 11330.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XpsV2nsr4%3D&md5=7be6cf6aa286d5a4ec2483d819c17785CAS | 22746974PubMed |
[7] S. Gründemann, A. Kovacevic, M. Albrecht, J. W. Faller, R. H. Crabtree, Chem. Commun. 2001, 2274.
| Crossref | GoogleScholarGoogle Scholar |
[8] (a) O. Schuster, L. Yang, H. G. Raubenheimer, M. Albrecht, Chem. Rev. 2009, 109, 3445.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXktVSmt7s%3D&md5=30408de56cf286e2c636c180877ac310CAS | 19331408PubMed |
(b) P. L. Arnold, S. Pearson, Coord. Chem. Rev. 2007, 251, 596.
| Crossref | GoogleScholarGoogle Scholar |
(c) M. Albrecht, Chem. Commun. 2008, 3601.
| Crossref | GoogleScholarGoogle Scholar |
[9] E. Aldeco-Perez, A. J. Rosenthal, B. Donnadieu, P. Parameswaran, G. Frenking, G. Bertrand, Science 2009, 326, 556.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1ymsrnJ&md5=594c70aa23ee2702b06c28b3fca5e370CAS | 19900893PubMed |
[10] A. Pratap Singh, R. S. Ghadwal, H. W. Roesky, J. J. Holstein, B. Dittrich, J.-P. Demers, V. Chevelkovb, A. Langeb, Chem. Commun. 2012, 48, 7574.
| Crossref | GoogleScholarGoogle Scholar |
[11] (a) Y. Wang, Y. Xie, M. Y. Abraham, P. Wei, H. F. Schaefer, P. R. Schleyer, G. H. Robinson, J. Am. Chem. Soc. 2010, 132, 14370.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtF2msr3M&md5=46a9f9488c2f488c829dc6ebe6d50deeCAS | 20863065PubMed |
(b) A.-L. Schmitt, G. Schnee, R. Welter, S. Dagorne, Chem. Commun. 2010, 46, 2480.
| Crossref | GoogleScholarGoogle Scholar |
[12] G. A. Lawrance, Chem. Rev. 1986, 86, 17.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XhsVyqtr0%3D&md5=c075ba8ca6ae3fd440b7be3dbfe36eacCAS |
[13] (a) N. Katir, D. Matioszek, S. Ladeira, J. Escudié, A. Castel, Angew. Chem. Int. Ed. 2011, 50, 5352.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXms1SltLs%3D&md5=a0dd0811f4075a3325f9bc9cd18469e1CAS |
(b) B. Bantu, G. M. Pawar, U. Decker, K. Wurst, A. M. Schmidt, M. R. Buchmeiser, Chem. – Eur. J. 2009, 15, 3103.
| Crossref | GoogleScholarGoogle Scholar |
(c) B. Gehrhus, P. B. Hitchcock, M. F. Lappert, J. Chem. Soc., Dalton Trans. 2000, 3094.
| Crossref | GoogleScholarGoogle Scholar |
(d) F. E. Hahn, L. Wittenbecher, M. Kühn, T. Lügger, R. Fröhlich, J. Organomet. Chem. 2001, 617–618, 629.
| Crossref | GoogleScholarGoogle Scholar |
(e) S. M. I. Al-Rafia, A. C. Malcolm, S. K. Liew, M. J. Ferguson, E. Rivard, J. Am. Chem. Soc. 2011, 133, 777.
| Crossref | GoogleScholarGoogle Scholar |
(f) K. C. Thimer, S. M. I. Al-Rafia, M. J. Ferguson, R. McDonald, E. Rivard, Chem. Commun. 2009, 7119.
| Crossref | GoogleScholarGoogle Scholar |
[14] (a) N. Kuhn, C. Maichle-Mößmer, E. Niquet, I. Walker, Z. Naturforsch. B: Chem. Sci. 2002, 57, 47.
| 1:CAS:528:DC%2BD38Xit1CisLk%3D&md5=d8011d6edf44b6ad6b47c19df4c29369CAS |
(b) T. Böttcher, B. S. Bassil, G. V. Röschenthaler, Inorg. Chem. 2012, 51, 763.
| Crossref | GoogleScholarGoogle Scholar |
(c) N. Kuhn, T. Kratz, D. Blaser, R. Boese, Chem. Ber. 1995, 128, 245.
| Crossref | GoogleScholarGoogle Scholar |
[15] P. Pyykkö, M. Atsumi, Chem. – Eur. J. 2009, 15, 186.
| Crossref | GoogleScholarGoogle Scholar | 19058281PubMed |
[16] (a) A.-L. Schmitt, G. Schnee, R. Welter, S. Dagorne, Chem. Commun. 2010, 46, 2480.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjs1Gms7w%3D&md5=bc850d657b4312abc7ecef572644d7eaCAS |
(b) D. Holschumacher, T. Bannenberg, C. H. Hrib, P. G. Jones, M. Tamm, Angew. Chem. Int. Ed. 2008, 47, 7428.
| Crossref | GoogleScholarGoogle Scholar |
(c) T. W. Graham, K. A. Udachin, A. J. Carty, Chem. Commun. 2006, 2699.
| Crossref | GoogleScholarGoogle Scholar |
[17] (a) L. Jafarpour, E. D. Stevens, S. P. Nolan, J. Organomet. Chem. 2000, 606, 49.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmsFKrt7s%3D&md5=c4411da98b54ba6a37e1694d3991f868CAS |
(b) L. Hintermann, Beilstein J. Org. Chem. 2007, 3, 1.
| Crossref | GoogleScholarGoogle Scholar |
[18] Z. Otwinowski, W. Minor, Processing of X-ray Diffraction Data Collected in Oscillation Mode, in Methods Enzymol. (Ed. C. W. Carter, Jr) 1997, Vol. 276, pp. 307–326 (Academic Press: New York, NY).
[19] (a) G. M. Sheldrick, Acta Crystallogr. 2008, A64, 112.
(b) G. M. Sheldrick, Acta Crystallogr. A 1990, 46, 467.
| Crossref | GoogleScholarGoogle Scholar |
(c) G. M. Sheldrick, SHELX97 Programs for Crystal Structure Analysis (Release 97–2) 1998 (University of Göttingen: Göttingen).
[20] (a) G. te Velde, F. M. Bickelhaupt, E. J. Baerends, C. Fonseca Guerra, S. J. A. van Gisbergen, J. G. Snijders, T. Ziegler, J. Comput. Chem. 2001, 22, 931.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjtlGntrw%3D&md5=a7f1b78ca0435f2616504223f0e684c8CAS |
(b) C. Fonseca Guerra, J. G. Snijders, G. te Velde, E. J. Baerends, Theor. Chem. Acc. 1998, 99, 391.
(c) ADF 2008.01, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands. http://www.scm.com
[21] R. G. Parr, W. Yang, Density Functional Theory of Atoms and Molecules 1989 (Oxford University Press: Oxford).
[22] S. H. Vosko, L. Wilk, M. Nusair, Can. J. Phys. 1980, 58, 1200.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXlvFagt74%3D&md5=8550ef1bd6ce2d8e3fe5c5d1a396d8ceCAS |
[23] (a) A. D. Becke, Phys. Rev. A 1988, 38, 3098.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXmtlOhsLo%3D&md5=2a3bc3989fac96c88d548336c5199bd8CAS | 9900728PubMed |
(b) J. P. Perdew, Phys. Rev. B 1986, 33, 8822.
| Crossref | GoogleScholarGoogle Scholar |
[24] (a) E. van Lenthe, E. J. Baerends, J. G. Snijders, J. Chem. Phys. 1993, 99, 4597.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXmsl2jt7o%3D&md5=0ce4210adea7117cda833827723a77d9CAS |
(b) E. van Lenthe, E. J. Baerends, J. G. Snijders, J. Chem. Phys. 1994, 101, 9783.
| Crossref | GoogleScholarGoogle Scholar |
(c) E. van Lenthe, A. Ehlers, E. J. Baerends, J. Chem. Phys. 1999, 110, 8943.
| Crossref | GoogleScholarGoogle Scholar |
[25] A. Klamt, G. Schüürmann, J. Chem. Soc., Perkin Trans. 2 1993, 799.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXkvVSku7o%3D&md5=9bb6a36b466678effc5041172f11bbcbCAS |
[26] L. Versluis, T. Ziegler, J. Chem. Phys. 1988, 88, 322.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXhvFejtr0%3D&md5=933ef80ec9cff2011e6976c12d2814ceCAS |