Polyoxometalate Insertion into Cu–pz Porous and Cu-bim Knighthead Coordination Polymers: [{Cu4(pz)5.5}{Cu2(2,2′-bim)3}0.5{P2W18O62}]·H2O
Yanglei Xu A B , Jiang Wu A B , Kai Yu A B , Zhanhua Su A B , Chunxiao Wang A B , Chunmei Wang A B and Baibin Zhou A B CA Key Laboratory of Design and Synthesis of Functional Materials and Green Catalysis, Heilongjiang Province, Harbin Normal University, Harbin, 150025, China.
B Key Laboratory for Photonic and Electronic Band Gap Materials, Ministry of Education, Harbin Normal University, Harbin, 150025, China.
C Corresponding author. Email: zhou_bai_bin@163.com
Australian Journal of Chemistry 66(8) 938-943 https://doi.org/10.1071/CH13111
Submitted: 7 March 2013 Accepted: 28 April 2013 Published: 17 May 2013
Abstract
The structure of crystallised {[Cu4(pz)5.5][Cu2(2,2′-bim)3]0.5[P2W18O62]}·H2O (1) (pz = pyrazine, bim = biimidazole) is reported. The crystal structure is characterised by cage-like pores [Cu8(pz)11]8+ of Cu ions linked through pz ligands. [P2W18O62]6– polyanions are capsulated into cage-like pores of [Cu8(pz)11]8+, forming ‘hamburger’-like units. Furthermore, the three-dimensional framework in 1 is achieved via copper-pyrazolate layers, binuclear copper-biimidazole subunits, and Dawson-type polyoxometalate clusters. The electrochemical properties of compound 1 were also studied in detail.
References
[1] H. X. Yang, S. P. Guo, J. Tao, J. X. Lin, R. Cao, Cryst. Growth Des. 2009, 9, 4735.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXos1Sqsrw%3D&md5=309a945331c3e30a84d6b809ee663d68CAS |
[2] B. Z. Lin, L. W. He, B. H. Xu, X. L. Li, Z. Li, P. D. Liu, Cryst. Growth Des. 2009, 9, 273.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVShsb7L&md5=901e57664bd4d95afbfd393e8bd87de1CAS |
[3] H. J. Pang, C. J. Zhang, J. Peng, Y. H. Wang, J. Q. Sha, A. X. Tian, P. P. Zhang, Y. Chen, M. Zhu, Z. M. Su, Eur. J. Inorg. Chem. 2009, 2009, 5175.
| Crossref | GoogleScholarGoogle Scholar |
[4] H. X. Yang, S. Y. Gao, J. Lu, B. Xu, J. X. Lin, R. Cao, Inorg. Chem. 2010, 49, 736.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFylurjO&md5=0653520ec7069c0fae75d8bb382a7e4cCAS |
[5] E. Ahmed, M. Ruck, Angew. Chem. Int. Ed. 2012, 51, 308.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFeqt7zF&md5=a2a3651f3bac30db6e3c39a0d26f2cdfCAS |
[6] H. J. Pang, J. Peng, C. J. Zhang, Y. G. Li, P. P. Zhang, H. Y. Ma, Z. M. Su, Chem. Commun. 2010, 46, 5097.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXotlCntb0%3D&md5=8c690de614d27a310515492cfdbd0c36CAS |
[7] H. X. Yang, T. F. Liu, M. N. Cao, H. F. Li, S. Y. Gao, R. Cao, Chem. Commun. 2010, 46, 2429.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjs1Gnur4%3D&md5=4fba3369614567fd87073c64f9b8174cCAS |
[8] J. P. Zhang, X. M. Chen, Chem. Commun. 2006, 42, 1689.
| Crossref | GoogleScholarGoogle Scholar |
[9] X. L. Wang, H. L. Hu, A. X. Tian, H. Y. Lin, J. Li, Inorg. Chem. 2010, 49, 10299.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlWitbfK&md5=25641a2fb9e0c475607ba5c6d309c97aCAS |
[10] X. F. Kuang, X. Y. Wu, J. Zhang, C. Z. Lu, Chem. Commun. 2011, 47, 4150.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjs1Wmsbo%3D&md5=3ff033a2c16dd2e2cb288cc9fcdcc3e4CAS |
[11] X. L. Wang, Y. G. Li, Y. Lu, H. Fu, Z. M. Su, E. B. Wang, Cryst. Growth Des. 2010, 10, 4227.
| Crossref | GoogleScholarGoogle Scholar |
[12] P. P. Zhang, J. Peng, H. J. Pang, J. Q. Sha, M. Zhu, D. D. Wang, M. G. Liu, Z. M. Su, Cryst. Growth Des. 2011, 11, 2736.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmsFGisL0%3D&md5=36f95b4eff4698cb5bbdb6b313aaa1c3CAS |
[13] H. Fu, Y. G. Li, Y. Lu, W. L. Chen, Q. Wu, J. X. Meng, X. L. Wang, Z. M. Zhang, E. B. Wang, Cryst. Growth Des. 2011, 11, 458.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlsV2qtA%3D%3D&md5=e5f1df8b555c5c49efbc098c693994b7CAS |
[14] V. Selmani, C. Landee, M. M. Turnbull, J. L. Wikaira, F. Xiao, Inorg. Chem. Commun. 2010, 13, 1399.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVCrs7nP&md5=7f6d643c9284b84df1ec534bde0dc1baCAS |
[15] H. S. Lin, P. A. Maggard, Cryst. Growth Des. 2010, 10, 1323.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXivFKmtg%3D%3D&md5=caa989f60576a0eb2d550047f3ef6d7eCAS |
[16] M. Wriedt, C. Nather, Z. Anorg. Allg. Chem. 2011, 637, 666.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmtl2js7Y%3D&md5=4df2ef33a75f69527e7d9c5586759384CAS |
[17] S. Nikolaou, A. Luiz, B. Formiga, H. E. Toma, Inorg. Chem. Commun. 2010, 13, 1032.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpt1Wntrg%3D&md5=63b84f76ea7f53fdae13a4526934ce98CAS |
[18] A. D. Burrows, C. G. Frost, M. Kandiah, L. L. Keenan, M. F. Mahon, T. L. Savarese, J. E. Warren, Inorg. Chim. Acta 2011, 366, 303.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXivFGkug%3D%3D&md5=7f4cda646de93ea0792dd171cbf139baCAS |
[19] J. Z. Gu, D. Y. Lv, Z. Q. Gao, J. Z. Liu, W. Dou, Y. Tang, J. Solid State Chem. 2011, 184, 675.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjtVKls70%3D&md5=8f985e3e294a26388fc07a707ce7f3aeCAS |
[20] X. L. Wang, C. Qin, E. B. Wang, Z. M. Su, Y. G. Li, L. Xu, Angew. Chem. Int. Ed. 2006, 45, 7411.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1Omu7jP&md5=0e1997f882b87b72655a243b60d751aaCAS |
[21] X. L. Wang, Y. F. Bi, B. K. Chen, H. Y. Lin, G. C. Liu, Inorg. Chem. 2008, 47, 2442.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjtVOku70%3D&md5=ee4b19efac0431a81ae9bc577833fb46CAS |
[22] D. J. Chesnut, D. Hagrman, P. J. Zapf, R. P. Hammond, R. LaDuca, R. C. Haushalter, J. Zubieta, Coord. Chem. Rev. 1999, 190–192, 737.
| Crossref | GoogleScholarGoogle Scholar |
[23] D. Hagrman, C. Zubieta, D. J. Rose, J. Zubieta, R. C. Haushalter, Angew. Chem. Int. Ed. 1997, 36, 873.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjtF2gsbc%3D&md5=6dce12f03c8bbf1ef5a1c55ce1d1f17aCAS |
[24] P. J. Hagrman, D. Hagrman, J. Zubieta, Angew. Chem. Int. Ed. 1999, 38, 2638.
| Crossref | GoogleScholarGoogle Scholar |
[25] P. J. Hagrman, D. Hagrman, J. Zubieta, Comment. Inorg. Chem. 1999, 21, 225.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhtlamsrs%3D&md5=08686572096584ca876d777779bba679CAS |
[26] C. H. Li, K. L. Huang, Y. N. Chi, X. Liu, Z. G. Han, L. Shen, C. W. Hu, Inorg. Chem. 2009, 48, 2010.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtV2rsr4%3D&md5=013959ba102e12ecb3a1ff28a5b37da7CAS | 19235962PubMed |
[27] Y. Q. Lan, S. L. Li, X. L. Wang, K. Z. Shao, D. Y. Du, H. Y. Zang, Z. M. Su, Inorg. Chem. 2008, 47, 8179.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpslOgsb8%3D&md5=bffa84fc57a562973d88206ab67385a1CAS | 18698762PubMed |
[28] Q. X. Han, L. J. Zhang, C. He, J. Y. Niu, C. Y. Duan, Inorg. Chem. 2012, 51, 5118.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xlt1eiu7s%3D&md5=52f643a95f022ee511275e4b07e7cba1CAS |
[29] A. X. Tian, J. Ying, J. Peng, J. Q. Sha, Z. G. Han, J. F. Ma, Z. M. Su, N. H. Hu, H. Q. Jia, Inorg. Chem. 2008, 47, 3274.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjtVCqsbw%3D&md5=7cb29c14002c48db39e9be3ef4db1adbCAS | 18330984PubMed |
[30] G. F. Hou, L. H. Bi, B. Li, L. X. Wu, Inorg. Chem. 2010, 49, 6474.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnsFGht7c%3D&md5=ab3305b2cc540c44bf70447e358facecCAS |
[31] M. Wriedt, C. Nather, Z. Anorg. Allg. Chem. 2011, 637, 666.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmtl2js7Y%3D&md5=4df2ef33a75f69527e7d9c5586759384CAS |
[32] J. Jornet-Somoza, M. Deumal, M. A. Robb, C. P. Landee, M. M. Turnbull, R. Feyerherm, J. J. Novoa, Inorg. Chem. 2010, 49, 1750.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnsVyhtA%3D%3D&md5=87d04d2568f64b9e104a9118c095e41aCAS | 20088489PubMed |
[33] M. Zhu, J. Peng, H. J. Pang, P. P. Zhang, Y. Chen, D. D. Wang, M. G. Liu, Y. H. Wang, J. Solid State Chem. 2011, 184, 1070.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlsVWiu70%3D&md5=b6de710607a9adbf0fdeee7f34b5b0fcCAS |
[34] F. Y. Cui, X. Y. Ma, C. Li, T. Dong, Y. Z. Gao, Z. G. Han, Y. N. Chi, C. W. Hu, J. Solid State Chem. 2010, 183, 2925.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFamsLfN&md5=d6530bdf49fb53b2a5ea92335e76a868CAS |
[35] Q. Tang, C. J. Zhang, C. H. Zhang, H. Y. Wang, Y. G. Chen, S. X. Liu, Inorg. Chem. Commun. 2012, 15, 238.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1yns7vL&md5=30477f1c359ae7d05bd767a2a937b3a3CAS |
[36] X. T. Zhang, J. M. Dou, P. H. Wei, D. C. Li, B. Li, C. W. Shi, B. Hua, Inorg. Chim. Acta 2009, 362, 3325.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltlOqsLo%3D&md5=c1f6501503735bfb443a2c06d9d019e3CAS |
[37] Y. P. Ren, X. J. Kong, X. Y. Hu, M. Sun, L. S. Long, R. B. Huang, L. S. Zheng, Inorg. Chem. 2006, 45, 4016.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjtlOisb8%3D&md5=24977cfac872e67f30f29a7cbba9ba41CAS | 16676962PubMed |
[38] M. Singh, S. E. Lofland, K. V. Ramanujachary, A. Ramanan, Cryst. Growth Des. 2010, 10, 5105.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVaju73N&md5=1f849f714853ffa790e7f3e94cbb1080CAS |
[39] X. J. Kong, Y. P. Ren, P. Q. Zheng, Y. X. Long, L. S. Long, R. B. Huang, L. S. Zheng, Inorg. Chem. 2006, 45, 10702.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlCit7fP&md5=9b42596139cd53fcc343e43a565ce9a7CAS | 17173426PubMed |
[40] M. Zhu, J. Peng, H. J. Pang, P. P. Zhang, Y. Chen, D. D. Wang, M. G. Liu, Y. H. Wang, Inorg. Chim. Acta. 2011, 370, 260.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkslKhtL4%3D&md5=9d4281057b513509a7f369f63f441378CAS |
[41] H. X. Yang, J. X. Lin, J. T. Chen, X. D. Zhu, S. Y. Gao, R. Cao, Cryst. Growth Des. 2008, 8, 2623.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXot1yqt70%3D&md5=3c3df95aa4d17b7e4725ab03e4eddaadCAS |
[42] C.-D. Zhang, S.-X. Liu, C.-Y. Sun, F.-J. Ma, Z.-M. Su, Cryst. Growth Des. 2009, 9, 3655.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnslSrsrY%3D&md5=a4f933962ed676f82bded339367d5be9CAS |
[43] M. Zhu, J. Peng, H. J. Pang, P. P. Zhang, Y. Chen, D. D. Wang, M. G. Liu, Y. H. Wang, Inorg. Chim. Acta 2010, 363, 3832.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht12gtLrI&md5=277d257d4d6c742c26b873e51c2e2c4fCAS |
[44] J. Q. Sha, J. Peng, Y. G. Li, P. P. Zhang, H. J. Pang, Inorg. Chem. Commun. 2008, 11, 907.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXosVOkt7k%3D&md5=999576ed987b3e6c0117bb5f03ac5ee9CAS |
[45] J. Q. Sha, J. Peng, Y. Q. Lan, Z. M. Su, H. J. Pang, A. X. Tian, P. P. Zhang, M. Zhu, Inorg. Chem. 2008, 47, 5145.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlvFaktbY%3D&md5=4056ae78105201667422421d598f8bc4CAS |
[46] J. Q. Sha, C. Wang, J. Peng, J. Chen, A. X. Tian, P. P. Zhang, Inorg. Chem. Commun. 2007, 10, 1321.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtF2qsbfM&md5=329fd0a9c3bd533a69dd8a2a5148aee6CAS |
[47] J. Q. Sha, L. Y. Liang, Z. W. Yang, C. Wang, Y. L. Qu, Y. G. Lv, Inorg. Chem. Commun. 2010, 13, 840.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmvFynsr0%3D&md5=524ff6624a7d4de21a1ed9c5e9c68c98CAS |
[48] A. Mahmoud, B. Keita, L. Nadjo, O. Oung, R. Contant, S. Brown, Y. DeKouchkovsky, J. Electroanal. Chem. 1999, 463, 129.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhs1SltL8%3D&md5=980f8db09f4d671de373c5075f12301aCAS |
[49] B. Keita, A. Belhouari, L. Nadjo, R. Contant, J. Electroanal. Chem. 1995, 381, 243.
| Crossref | GoogleScholarGoogle Scholar |
[50] X. D. Xi, S. J. Dong, J. Mol. Catal. Chem. 1996, 114, 257.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XntlOnsr0%3D&md5=7afefba33a1e3d31133d960e99c0c7eaCAS |
[51] K. Yu, B. B. Zhou, Y. Yu, Z. H. Su, C. M. Wang, C. X. Wang, Inorg. Chem. Commun. 2011, 14, 1846.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1GjsLbK&md5=fd2f90ab0ba0068b9bf339d30784b44aCAS |
[52] R. Contant, W. G. Klemperer, O. Yaghi, in Inorganic Syntheses (Ed. A. P. Ginsberg) 1990 Vol. 27, pp. 104–111 (John Wiley: New York, NY).
[53] G. M. Sheldrick, SHELXL-97, Program for Crystal Structure Refinement 1997 (University of Göttingen: Göttingen).
[54] G. M. Sheldrick, SHELXL-97, Program for Crystal Structure Solution 1997 (University of Göttingen: Göttingen).