Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
REVIEW

Multi-Bond Forming Processes in Efficient Synthesis*

Nicholas J. Green A and Michael S. Sherburn A B
+ Author Affiliations
- Author Affiliations

A Australian Research Council Centre of Excellence for Free Radical Chemistry and Biotechnology, Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia.

B Corresponding author. Email: sherburn@rsc.anu.edu.au




Nicholas Green is currently a Ph.D. student in the Sherburn research group at the Research School of Chemistry, the Australian National University (ANU). He studied a Ph.B. (Science) at the ANU and received an Honours degree with the University Medal in 2011, taking up doctoral studies as a Rodney Rickards scholar soon after. His research interests include the use of highly unsaturated molecules in synthesis and the catalytic, enantioselective Diels–Alder reaction.



Professor Michael Sherburn studied chemistry at the University of Nottingham, UK, and received his Ph.D. in 1991 with John A. Murphy. He then moved to Australia and worked as a post-doctoral fellow in the Research School of Chemistry, the Australian National University (ANU) with Lewis N. Mander. He held academic positions at Massey University in New Zealand and the University of Sydney before being appointed at the Research School of Chemistry, ANU in 2002. His awards include the Le Fèvre Memorial Prize of the Australian Academy of Science (2006) and the A. J. Birch Medal of the RACI (2008).

Australian Journal of Chemistry 66(3) 267-283 https://doi.org/10.1071/CH13003
Submitted: 2 January 2013  Accepted: 1 February 2013   Published: 18 March 2013

Abstract

An increasing number of synthetic organic chemists are embracing the philosophy of efficiency. Herein we highlight multi-bond forming processes, which form two or more new covalent bonds in a single synthetic operation. Such processes, which have the ability to rapidly increase structural complexity, are preeminent in contemporary synthetic organic chemistry. In this short review we classify, analyse, and contrast contemporary multi-bond forming processes, frame these cutting edge contributions within a historical context, and speculate on likely future developments in the area.


References

[1]     (a) The official website of the Nobel Prize, nobelprize.org, lists (a) 2010 Nobel Prize to Heck, Negishi, and Suzuki “for palladium-catalysed cross couplings in organic synthesis”.
         (b) 2005 Nobel Prize to Chauvin, Grubbs, and Schrock “for the development of the metathesis method in organic synthesis”.

[2]  K. C. Nicolaou, J. S. Chen, Classics in Total Synthesis III 2011 (Wiley-VCH: Weinheim).

[3]  M. Razzak, J. K. De Brabander, Nat. Chem. Biol. 2011, 7, 865.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVOisL3O&md5=a0c08bffea5bdd1c31be632c63a190acCAS |

[4]  We are referring to limits imposed by the laws of nature here.

[5]  (a) The ideal synthesis is an idea initially articulated by Hendrickson and then developed and championed by Wender. See: J. B. Hendrickson, J. Am. Chem. Soc. 1975, 97, 5784.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2MXlvFajs7Y%3D&md5=cb04a2f89de7e014b1f08d43eba2a772CAS |
      (b) P. A. Wender, M. P. Croatt, B. Witulski, Tetrahedron 2006, 62, 7505.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) P. A. Wender, B. L. Miller, Nature 2009, 460, 197.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) See also: T. Gaich, P. S. Baran, J. Org. Chem. 2010, 75, 4657.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  We do not wish to underplay the importance of total synthesis. There is pressing need for total synthesis to continue to pioneer new methods and strategies as stepping stones towards the ‘ideal synthesis’. For a discussion of the problem of total synthesis within the context of a specific natural product/medicinal agent, see: A. M. Walji, D. W. C. MacMillan, Synlett 2007, 1477.
         | 1:CAS:528:DC%2BD2sXotVynu7Y%3D&md5=26c9a1a81d89d8b4cb029d911de50142CAS |

[7]  H. Ledford, Nature 2010, 468, 608.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFSku7bP&md5=3d6ca89e6f84da4cc4ca64f3830242b2CAS |

[8]  We eschew the word ‘multiple’ in favour of ‘multi’, in order to prevent any possible association with unsaturated bonds.

[9]  L. F. Tietze, U. Beifuss, Angew. Chem. Int. Ed. Engl. 1993, 32, 131.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  Ł. Albrecht, H. Jiang, K. A. Jørgensen, Angew. Chem. Int. Ed. 2011, 50, 8492.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpvFahsbs%3D&md5=8f15eea47a5791a484234f9675aae0caCAS |

[11]  L. F. Tietze, G. Brasche, K. M. Gericke, Domino Reactions in Organic Synthesis, 1st ed., 2006 (Wiley-VCH: Weinheim).

[12]  R. Robinson, J. Chem. Soc. Trans. 1917, 111, 762.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaC2sXhsFShsw%3D%3D&md5=486885b969be9af76f1025d5a2b9e24bCAS |

[13]  J. Chiefari, Y. K. Chong, F. Ercole, J. Krstina, J. Jeffery, T. P. T. Le, R. T. A. Mayadunne, G. F. Meijs, C. L. Moad, G. Moad, E. Rizzardo, S. H. Thang, Macromolecules 1998, 31, 5559.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXkvF2gs7k%3D&md5=b6c833121ee15ed9473a3f1c9c1c7141CAS |

[14]  W. S. Johnson, M. B. Gravestock, B. E. McCarry, J. Am. Chem. Soc. 1971, 93, 4332.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3MXltFSms74%3D&md5=6bd9593200198c5164daa28f152271b1CAS |

[15]  A. Endo, A. Yanagisawa, M. Abe, S. Tohma, T. Kan, T. Fukuyama, J. Am. Chem. Soc. 2002, 124, 6552.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xjs1aksLY%3D&md5=848d05cb97b96707689582b0265fb9f3CAS |

[16]  Controlled and Living Polymerizations: From Mechanisms to Applications, (Eds. K. Matyjaszewski, A. H. E. Müller) 2009 (Wiley-VCH: Weinheim).

[17]  (a) For reviews on polymerisation, see: G. Moad, E. Rizzardo, S. H. Thang, Aust. J. Chem. 2012, 65, 985.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlWmu7%2FE&md5=aa37bfea601cd67a23853d2d03121563CAS |
         (b) Synthesis of Polymers (Eds. D. A. Schluter, C. Hawker, J. Sakamoto) 2012 (Wiley-VCH: Weinheim).

[18]  Z. Wang, L. Zhou, K. El-Boubbou, X.-S. Ye, X. Huang, J. Org. Chem. 2007, 72, 6409.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnvFGntLk%3D&md5=f031e2794b2ae61be22d5089634d4d57CAS |

[19]  O. J. Plante, E. R. Palmacci, P. H. Seeberger, Science 2001, 291, 1523.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhsVeru7w%3D&md5=d3277b86be6dcc4b22853d33d6c53849CAS |

[20]  W. S. Johnson, L. Werthemann, W. R. Bartlett, T. J. Brocksom, T.-T. Li, D. J. Faulkner, M. R. Petersen, J. Am. Chem. Soc. 1970, 92, 741.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3cXnvFamtA%3D%3D&md5=e70dba8b9ffadcfecf7341d2aac466ddCAS |

[21]  W. R. Roush, R. J. Sciotti, J. Am. Chem. Soc. 1998, 120, 7411.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXkvF2gsr0%3D&md5=2473ba1a79d97836dc6ae2ef058f8036CAS |

[22]  O. Diels, K. Alder, Justus Liebigs Ann. Chem. 1928, 460, 98.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaB1cXpsFyn&md5=9259d4442a2fea355efa743fa7997eb0CAS |

[23]  I. U. Khand, G. R. Knox, P. L. Pauson, W. E. Watts, M. I. Foreman, J. Chem. Soc., Perkin Trans. 1 1973, 977.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3sXhsF2jtro%3D&md5=abeecd497b59cf32470da6b718a2ffefCAS |

[24]  With the occasional exception involving consecutive reactions, as noted.

[25]  (a) G. Stork, A. W. Burgstahler, J. Am. Chem. Soc. 1955, 77, 5068.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG28XksVCnsQ%3D%3D&md5=0aa168df4c2a549b47723c3fcb0e785eCAS |
      (b) A. Eschenmoser, L. Ruzicka, O. Jeger, D. Arigoni, Helv. Chim. Acta 1955, 38, 1890.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) For an English translation and commentary, see: A. Eschenmoser, D. Arigoni, Helv. Chim. Acta 2005, 88, 3011.For an English translation and commentary, see:
         | Crossref | GoogleScholarGoogle Scholar |
      (d) P. A. Stadler, A. Eschenmoser, H. Schinz, G. Stork, Helv. Chim. Acta 1957, 40, 2191.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  (a) Key papers include: D. J. Goldsmith, J. Am. Chem. Soc. 1962, 84, 3913.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3sXjtlGnsg%3D%3D&md5=4b4dd9e37b2b3b93d76a08ac0fa963d7CAS |
      (b) D. J. Goldsmith, C. F. Phillips, J. Am. Chem. Soc. 1969, 91, 5862.
         | Crossref | GoogleScholarGoogle Scholar |

[27]  (a) Key papers include: E. E. van Tamelen, J. Willet, M. Schwartz, R. Nadeau, J. Am. Chem. Soc. 1966, 88, 5937.
         | 1:CAS:528:DyaF2sXmsFKmuw%3D%3D&md5=9c4a62d9e04e4f5a819e5119b3bfef8eCAS |
      (b) E. E. Van Tamelen, J. P. McCormick, J. Am. Chem. Soc. 1969, 91, 1847.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) E. E. Van Tamelen, T. M. Leiden, J. Am. Chem. Soc. 1982, 104, 2061.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) E. E. Van Tamelen, J. R. Hwu, J. Am. Chem. Soc. 1983, 105, 2490.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) For an early review, see: E. E. Van Tamelen, Acc. Chem. Res. 1968, 1, 111.
         | Crossref | GoogleScholarGoogle Scholar |

[28]     (a) A summary of Johnson’s contributions can be found in: (a) W. S. Johnson, A Fifty-Year Love Affair with Organic Chemistry 1998 (American Chemical Society: Washington, DC).
      (b) For an earlier review, see: W. S. Johnson, Bioorg. Chem. 1976, 5, 51.
         | Crossref | GoogleScholarGoogle Scholar |

[29]  (a) For an excellent review of pioneering biomimetic polycyclisation reactions towards terpenoid structures, see: R. A. Yoder, J. N. Johnston, Chem. Rev. 2005, 105, 4730.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1Gms7bM&md5=5e346c341ce2c19e6980c34bcf555982CAS |
      (b) A more recent review: M. Kotora, F. Hessler, B. Eignerová, Eur. J. Org. Chem. 2012, 29.
         | Crossref | GoogleScholarGoogle Scholar |

[30]  (a) Key early papers include: E. J. Corey, J. Lee, J. Am. Chem. Soc. 1993, 115, 8873.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXhtVOnsr8%3D&md5=5e716524535d3338c4a730beffe5425eCAS |
      (b) E. J. Corey, J. Lee, D. R. Liu, Tetrahedron Lett. 1994, 35, 9149.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) E. J. Corey, S. Lin, J. Am. Chem. Soc. 1996, 118, 8765.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) E. J. Corey, G. Luo, L. S. Lin, J. Am. Chem. Soc. 1997, 119, 9927.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) For an impressive recent example, see: K. Surendra, E. J. Corey, J. Am. Chem. Soc. 2009, 131, 13928.
         | Crossref | GoogleScholarGoogle Scholar |

[31]  W. J. Zuercher, M. Scholl, R. H. Grubbs, J. Org. Chem. 1998, 63, 4291.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjslKntrs%3D&md5=50d1e4cb1968adc5caceb119600676c1CAS |

[32]  S. P. Maddaford, N. G. Andersen, W. A. Cristofoli, B. A. Keay, J. Am. Chem. Soc. 1996, 118, 10766.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xmt1Gmt78%3D&md5=fad63fcab0541a29aff3f1b763e25f53CAS |

[33]  Y. Zhang, G. Z. Wu, G. Agnel, E. I. Negishi, J. Am. Chem. Soc. 1990, 112, 8590.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXmtlSqsbY%3D&md5=33ebe86493b3474cdbee567487d5dfc0CAS |

[34]  (a) M. Bogenstätter, A. Limberg, L. E. Overman, A. L. Tomasi, J. Am. Chem. Soc. 1999, 121, 12206.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) M. M. Abelman, L. E. Overman, J. Am. Chem. Soc. 1988, 110, 2328.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) N. E. Carpenter, D. J. Kucera, L. E. Overman, J. Org. Chem. 1989, 54, 5846.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) For a review, see: L. E. Overman, M. M. Abelman, D. J. Kucera, V. D. Tran, D. J. Ricca, Pure Appl. Chem. 1992, 64, 1813.
         | Crossref | GoogleScholarGoogle Scholar |

[35]  W. Oppolzer, R. J. DeVita, J. Org. Chem. 1991, 56, 6256.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXmtlWktrs%3D&md5=0f2d5319350e3fa7428ef286f2c14d5cCAS |

[36]  (a) B. M. Trost, Y. Shi, J. Am. Chem. Soc. 1991, 113, 701.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXotFSluw%3D%3D&md5=56c4d2b1c66d9a311e50d4aa34ccdd3bCAS |
      (b) B. M. Trost, Y. Shi, J. Am. Chem. Soc. 1992, 114, 791.
         | Crossref | GoogleScholarGoogle Scholar |

[37]  (a) R. L. Funk, K. P. C. Vollhardt, J. Am. Chem. Soc. 1980, 102, 5253.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXltFCrs74%3D&md5=40ebecb232131c0306c0723a2daa4538CAS |
      (b) S. H. Lecker, N. H. Nguyen, K. P. C. Vollhardt, J. Am. Chem. Soc. 1986, 108, 856.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) Recent variations on this theme include: M. Petit, C. Aubert, M. Malacria, Org. Lett. 2004, 6, 3937.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) U. Groth, N. Richter, A. Kalogerakis, Synlett 2006, 905.
         | Crossref | GoogleScholarGoogle Scholar |

[38]  Y. W. Andemichael, Y. Huang, K. K. Wang, J. Org. Chem. 1993, 58, 1651.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXhvFajurw%3D&md5=38fdca821e01dc8ad090d4ad8f7bb065CAS |

[39]  J. M. Bao, V. Dragisich, S. Wenglowsky, W. D. Wulff, J. Am. Chem. Soc. 1991, 113, 9873.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXmsl2ms7c%3D&md5=c3d77adaaaf3dd3c219bc5879a431a45CAS |

[40]  (a) A. Sakakura, A. Ukai, K. Ishihara, Nature 2007, 445, 900.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhvFGit7Y%3D&md5=18a4f5f3dca3a7db7f51a59961a631cbCAS |
      (b) S. A. Snyder, D. S. Treitler, A. P. Brucks, J. Am. Chem. Soc. 2010, 132, 14303.
         | Crossref | GoogleScholarGoogle Scholar |

[41]  (a) H. Ishibashi, K. Ishihara, H. Yamamoto, J. Am. Chem. Soc. 2004, 126, 11122.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmslSqt78%3D&md5=fe043d0ecb3ea369dbd326881b9d0d44CAS |
      (b) K. Ishihara, S. Nakamura, H. Yamamoto, J. Am. Chem. Soc. 1999, 121, 4906.
         | Crossref | GoogleScholarGoogle Scholar |

[42]  S. G. Sethofer, T. Mayer, F. D. Toste, J. Am. Chem. Soc. 2010, 132, 8276.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmvFaktrg%3D&md5=810c16b0f14383700eff538b7b66a2a3CAS |

[43]  (a) K. Surendra, W. W. Qiu, E. J. Corey, J. Am. Chem. Soc. 2011, 133, 9724.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXntVenurY%3D&md5=6b28e33abc448f4e40335b2cb66b6d82CAS |
      (b) K. Surendra, E. J. Corey, J. Am. Chem. Soc. 2012, 134, 11992.
         | Crossref | GoogleScholarGoogle Scholar |

[44]  Y.-J. Zhao, B. Li, L.-J. S. Tan, Z.-L. Shen, T.-P. Loh, J. Am. Chem. Soc. 2010, 132, 10242.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXos1ersLk%3D&md5=8e0ec41e333e8d629010de4af993940cCAS |

[45]  C. A. Mullen, A. N. Campbell, M. R. Gagné, Angew. Chem. Int. Ed. 2008, 47, 6011.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpslagtbc%3D&md5=76a67c68aa44151ab0c0df1a3e887713CAS |

[46]  R. R. Knowles, S. Lin, E. N. Jacobsen, J. Am. Chem. Soc. 2010, 132, 5030.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXktFekuro%3D&md5=409dd4fd532c321686a4d0854929b307CAS |

[47]  S. V. Pronin, R. A. Shenvi, Nat. Chem. 2012, 4, 915.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhtlylsb7O&md5=702b91cb8213b779bdbbfe22d376458fCAS |

[48]  (a) For recent reviews on radical polycyclisations, see: J. Justicia, L. Alvarez de Cienfuegos, A. G. Campana, D. Miguel, V. Jakoby, A. Gansauer, J. M. Cuerva, Chem. Soc. Rev. 2011, 40, 3525.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXns12nu78%3D&md5=8990e92637c94e40d10289e9394a5751CAS |
         (b) A. Baralle, A. Baroudi, M. Daniel, L. Fensterbank, J. Goddard, E. Lacôte, M. Larraufie, G. Maestri, M. Malacria, C. Ollivier, in Encyclopedia of Radicals in Chemistry, Biology and Materials (Eds. C. Chatgilialoglu, A. Studer), Ch. 27, pp. 729–765 (Wiley: Chichester).

[49]  R. Breslow, S. S. Olin, J. T. Groves, Tetrahedron Lett. 1968, 9, 1837.
         | Crossref | GoogleScholarGoogle Scholar |

[50]  J. Y. Lallemand, M. Julia, D. Mansuy, Tetrahedron Lett. 1973, 14, 4461.
         | Crossref | GoogleScholarGoogle Scholar |

[51]  Professor Athel Beckwith also made significant contributions to the understanding of the selectivity of radical addition ring closures, including an early radical polycyclisation reaction to form the triquinane framework. A. L. J. Beckwith, C. H. Schiesser, Tetrahedron 1985, 41, 3925.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XkvFKks78%3D&md5=89177426f8814b9e30ece94001789b14CAS |

[52]  (a) U. Hoffmann, Y. Gao, B. Pandey, S. Klinge, K. D. Warzecha, C. Krueger, H. D. Roth, M. Demuth, J. Am. Chem. Soc. 1993, 115, 10358.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXoslKg&md5=9a955bc42321f3651199cc6e2dc91066CAS |
      (b) X. Xing, M. Demuth, Eur. J. Org. Chem. 2001, 537.
         | Crossref | GoogleScholarGoogle Scholar |

[53]  (a) Acyl selenides as starting materials: L. Chen, G. B. Gill, G. Pattenden, Tetrahedron Lett. 1994, 35, 2593.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXlsFOqtrc%3D&md5=6ff75bc5b19eb577bc801d06afa3f93fCAS |
      (b) S. Handa, P. S. Nair, G. Pattenden, Helv. Chim. Acta 2000, 83, 2629.
         | Crossref | GoogleScholarGoogle Scholar |

[54]  (a) Macrocyclisation/transannular sequences: for an initial important contribution from Porter, see: N. A. Porter, V. H. T. Chang, D. R. Magnin, B. T. Wright, J. Am. Chem. Soc. 1988, 110, 3554.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXit1Wgs7k%3D&md5=4a8f88b8e3a382f9b3251645fafb10f4CAS |
      (b) For a review on early developments: S. Handa, G. Pattenden, Contemp. Org. Synth. 1997, 4, 196.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) For recent applications, see: G. Pattenden, M. A. Gonzalez, S. McCulloch, A. Walter, S. J. Woodhead, Proc. Natl. Acad. Sci. USA 2004, 101, 12024.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) G. Pattenden, D. A. Stoker, J. M. Winne, Tetrahedron 2009, 65, 5767.
         | Crossref | GoogleScholarGoogle Scholar |

[55]  (a) For reviews, see: A. F. Barrero, J. F. Quílez del Moral, E. M. Sánchez, J. F. Arteaga, Eur. J. Org. Chem. 2006, 1627.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjsV2jsLY%3D&md5=a0253bd09a218dd7f2694d0b4cfffa68CAS |
      (b) B. B. Snider, Chem. Rev. 1996, 96, 339.
         | Crossref | GoogleScholarGoogle Scholar |

[56]  B. B. Snider, J. Y. Kiselgof, B. M. Foxman, J. Org. Chem. 1998, 63, 7945.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmsVaksLo%3D&md5=a6b56c06c725d7d5e302644d90658112CAS |

[57]  P. A. Zoretic, Z. Shen, M. Wang, A. A. Ribeiro, Tetrahedron Lett. 1995, 36, 2925.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXlsVSqtb0%3D&md5=169979824610560a38a6eefc677e4048CAS |

[58]  A recent example: V. Domingo, J. F. Arteaga, J. L. L. Perez, R. Pelaez, J. F. Q. del Moral, A. F. Barrero, J. Org. Chem. 2012, 77, 341.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFKktrnI&md5=0b254607c56c33363f8aa3bdd7354596CAS |

[59]  M. A. González, S. Molina-Navarro, J. Org. Chem. 2007, 72, 7462.
         | Crossref | GoogleScholarGoogle Scholar |

[60]  (a) For examples, see: Q. Zhang, R. M. Mohan, L. Cook, S. Kazanis, D. Peisach, B. M. Foxman, B. B. Snider, J. Org. Chem. 1993, 58, 7640.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXivF2jsrY%3D&md5=6781df9899193b6d4a1d9a29fb335c8cCAS |
      (b) C. Heinemann, M. Demuth, J. Am. Chem. Soc. 1997, 119, 1129.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) D. Yang, X.-Y. Ye, S. Gu, M. Xu, J. Am. Chem. Soc. 1999, 121, 5579.
         | Crossref | GoogleScholarGoogle Scholar |

[61]  T. D. Beeson, A. Mastracchio, J.-B. Hong, K. Ashton, D. W. C. MacMillan, Science 2007, 316, 582.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXksFeksLY%3D&md5=9f2373dd65bd8c19c5dccc22cc70692cCAS |

[62]  S. Rendler, D. W. C. MacMillan, J. Am. Chem. Soc. 2010, 132, 5027.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjvVejsbw%3D&md5=20398528e679dbf8b5d81bc877ec7f3bCAS |

[63]  (a) For reviews, see: I. Vilotijevic, T. F. Jamison, Angew. Chem. Int. Ed. 2009, 48, 5250.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXosV2hsb0%3D&md5=4dbc6bcdc7723d0b3bdc974099986098CAS |
      (b) F. E. McDonald, R. Tong, J. C. Valentine, F. Bravo, Pure Appl. Chem. 2007, 79, 281.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) For recent examples, see: A. R. Van Dyke, T. F. Jamison, Angew. Chem. Int. Ed. 2009, 48, 4430.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) I. Vilotijevic, T. F. Jamison, Science 2007, 317, 1189.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) Y. Morimoto, H. Yata, Y. Nishikawa, Angew. Chem. Int. Ed. 2007, 46, 6481.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) R. Tong, F. E. McDonald, Angew. Chem. Int. Ed. 2008, 47, 4377.
         | Crossref | GoogleScholarGoogle Scholar |
      (g) J. Tanuwidjaja, S.-S. Ng, T. F. Jamison, J. Am. Chem. Soc. 2009, 131, 12084.
         | Crossref | GoogleScholarGoogle Scholar |
      (h) M. A. Boone, R. Tong, F. E. McDonald, S. Lense, R. Cao, K. I. Hardcastle, J. Am. Chem. Soc. 2010, 132, 5300.
         | Crossref | GoogleScholarGoogle Scholar |
      (i) J. J. Topczewski, J. G. Kodet, D. F. Wiemer, J. Org. Chem. 2011, 76, 909.
         | Crossref | GoogleScholarGoogle Scholar |

[64]  (a) Z. Xiong, R. Busch, E. J. Corey, Org. Lett. 2010, 12, 1512.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjtVyhtLo%3D&md5=67c6910582eb61f446ac350124ab2023CAS |
      (b) L. K. Geisler, S. Nguyen, C. J. Forsyth, Org. Lett. 2004, 6, 4159.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) For a similar, but less spectacular, synthesis, see: Y. Morimoto, T. Okita, H. Kambara, Angew. Chem. Int. Ed. 2009, 48, 2538.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) For similar recent cascade cyclisations to form polyether natural products, see: P. Yang, P.-F. Li, J. Qu, L.-F. Tang, Org. Lett. 2012, 14, 3932.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) J. A. Marshall, R. K. Hann, J. Org. Chem. 2008, 73, 6753.
         | Crossref | GoogleScholarGoogle Scholar |

[65]  J. Poulin, C. M. Grise-Bard, L. Barriault, Chem. Soc. Rev. 2009, 38, 3092.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht12ht73E&md5=5ca8a0ab82037af0724ab2596f2a007bCAS |

[66]  W. M. Bandaranayake, J. E. Banfield, D. St. C. Black, J. Chem. Soc., Chem. Commun. 1980, 902.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXht1ynsA%3D%3D&md5=3d4cc11e8f91791d68637433203c1d71CAS |

[67]  (a) K. C. Nicolaou, N. A. Petasis, R. E. Zipkin, J. Uenishi, J. Am. Chem. Soc. 1982, 104, 5555.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XlsVClt7o%3D&md5=6e0ca0fe0f75d406bf5eda32c27cfe08CAS |
      (b) K. C. Nicolaou, N. A. Petasis, J. Uenishi, R. E. Zipkin, J. Am. Chem. Soc. 1982, 104, 5557.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) K. C. Nicolaou, R. E. Zipkin, N. A. Petasis, J. Am. Chem. Soc. 1982, 104, 5558.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) K. C. Nicolaou, N. A. Petasis, R. E. Zipkin, J. Am. Chem. Soc. 1982, 104, 5560.
         | Crossref | GoogleScholarGoogle Scholar |

[68]  P. A. Wender, J. J. Howbert, Tetrahedron Lett. 1982, 23, 3983.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXovFSgsw%3D%3D&md5=eff4df96afbeaef50377c77e787d6331CAS |

[69]  K. C. Nicolaou, D. Sarlah, T. R. Wu, W. Zhan, Angew. Chem. Int. Ed. 2009, 48, 6870.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVOrtrzE&md5=4eaf4ee7fcdad6cd19aed12ec9914c94CAS |

[70]  S. D. Tilley, K. P. Reber, E. J. Sorensen, Org. Lett. 2009, 11, 701.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXisVSqtA%3D%3D&md5=8ac6c425a8a78263c4d4e2f313b4bf9fCAS |

[71]  D. A. Vosburg, C. D. Vanderwal, E. J. Sorensen, J. Am. Chem. Soc. 2002, 124, 4552.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XisVeksrg%3D&md5=82cf81a2497ec6f2a7b0e6e03eac0ab1CAS |

[72]  D. A. Evans, J. T. Starr, Angew. Chem. 2002, 114, 1865.
         | Crossref | GoogleScholarGoogle Scholar |

[73]  N. Tanaka, T. Suzuki, T. Matsumura, Y. Hosoya, M. Nakada, Angew. Chem. Int. Ed. 2009, 48, 2580.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXktlOrtbc%3D&md5=586a7d3b84412b77ab5d188efeac326aCAS |

[74]  S. E. Denmark, R. Y. Baiazitov, S. T. Nguyen, Tetrahedron 2009, 65, 6535.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXoslGltr8%3D&md5=3dbc61cc99e3717021d14e0b2570784cCAS |

[75]  D. M. Hodgson, A. H. Labande, F. Y. T. M. Pierard, M. Á. Expósito Castro, J. Org. Chem. 2003, 68, 6153.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXltV2isrg%3D&md5=28acb2207cb80ebc870faf816c5b1643CAS |

[76]  (a) A. Padwa, S. P. Carter, H. Nimmesgern, J. Org. Chem. 1986, 51, 1157.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XitVOisrw%3D&md5=d2eed99cbbbb9232a334dc3dcce6fd26CAS |
      (b) A. Padwa, Chem. Soc. Rev. 2009, 38, 3072.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) A. Padwa, Tetrahedron 2011, 67, 8057.
         | Crossref | GoogleScholarGoogle Scholar |

[77]  Carbenoids have also found use in different domino polycyclisation strategies, such as that recently employed to synthesise (±)-minfiensine and (±)-vincorine. M. Zhang, X. Huang, L. Shen, Y. Qin, J. Am. Chem. Soc. 2009, 131, 6013.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjslelsLY%3D&md5=316039baf2b12beeee2fe03cdf8a2c6fCAS |

[78]  Y. Sasaki, D. Kato, D. L. Boger, J. Am. Chem. Soc. 2010, 132, 13533.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtV2kur3M&md5=13891d25f685a7d488677a48479d2d20CAS |

[79]  E. L. Campbell, A. M. Zuhl, C. M. Liu, D. L. Boger, J. Am. Chem. Soc. 2010, 132, 3009.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhvFKisrc%3D&md5=ef06ad4d0800b85b254a596296f76198CAS |

[80]  C. H. Heathcock, M. M. Hansen, R. B. Ruggeri, J. C. Kath, J. Org. Chem. 1992, 57, 2544.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xkt1Krt78%3D&md5=e2cb0f5fc5a640ead459da18d23f2ff5CAS |

[81]  C. H. Heathcock, Proc. Natl. Acad. Sci. USA 1996, 93, 14323.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XnsVKlu7s%3D&md5=86622e62fb894384982f252794cb0372CAS |

[82]  F. He, Y. Bo, J. D. Altom, E. J. Corey, J. Am. Chem. Soc. 1999, 121, 6771.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXktVahsro%3D&md5=973cc2f96f6a2ee073981252659bdd5eCAS |

[83]  J. M. Mejia-Oneto, A. Padwa, Org. Lett. 2006, 8, 3275.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmtVShsb0%3D&md5=c5a9f9ce9007a9163da5889b0ffcdf37CAS |

[84]  D. F. Fischer, R. Sarpong, J. Am. Chem. Soc. 2010, 132, 5926.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXksF2lu7s%3D&md5=32ba39dbf23e3f8b039a80a0d2b80b08CAS |

[85]  C. L. Martin, L. E. Overman, J. M. Rohde, J. Am. Chem. Soc. 2010, 132, 4894.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjtVyjsrk%3D&md5=c6a4385a10d26cbac8a84ec901ce51eaCAS |

[86]  T. Hudlicky, J. W. Reed, The Way of Synthesis, 1st ed. 2007 (Wiley-VCH: Weinheim).

[87]  S. P. Lathrop, T. Rovis, J. Am. Chem. Soc. 2009, 131, 13628.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtV2nsLzM&md5=a4f0c0a051aaa0ab660ef2287870ee35CAS |

[88]  For a classification and review of these types of transformation, see: D. E. Fogg, E. N. dos Santos, Coord. Chem. Rev. 2004, 248, 2365.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVagsLzK&md5=eae8d52a3c25dd70872320301554bbabCAS |

[89]  K. C. Nicolaou, Y. H. Lim, J. Becker, Angew. Chem. Int. Ed. 2009, 48, 3444.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltFGhtro%3D&md5=1baf1f26ad920ec99dc20b25e5a3451bCAS |

[90]  Y. Zeng, J. Aubé, J. Am. Chem. Soc. 2005, 127, 15712.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFCltLbI&md5=f5d32ac49ed6db8ccb390e13b8cc671cCAS |

[91]  G. Majetich, Y. Zhang, X. Tian, J. E. Britton, Y. Li, R. Phillips, Tetrahedron 2011, 67, 10129.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFertbjI&md5=8381cd5c351f7ad9039b1c46e9c0e08fCAS |

[92]  R. M. A. Lavigne, M. Riou, M. L. Girardin, L. Morency, L. Barriault, Org. Lett. 2005, 7, 5921.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1Gisr%2FF&md5=983b0f9a30d6f18e49c21c05e4628c66CAS |

[93]  S. B. Jones, B. Simmons, A. Mastracchio, D. W. C. MacMillan, Nature 2011, 475, 183.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXovFehu74%3D&md5=e2ca333dec5611a2a0b01c5269b1be09CAS |

[94]  O. L. Chapman, M. R. Engel, J. P. Springer, J. C. Clardy, J. Am. Chem. Soc. 1971, 93, 6696.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE38XisFWnsw%3D%3D&md5=0aaac19f54da6cbfcd24e7482ad5fabaCAS |

[95]  (a) Rugulosin: K. C. Nicolaou, Y. H. Lim, C. D. Papageorgiou, J. L. Piper, Angew. Chem. 2005, 117, 8131.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) Thiostrepton: K. C. Nicolaou, M. Zak, B. S. Safina, A. A. Estrada, S. H. Lee, M. Nevalainen, J. Am. Chem. Soc. 2005, 127, 11176.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) K. C. Nicolaou, B. S. Safina, M. Zak, S. H. Lee, M. Nevalainen, M. Bella, A. A. Estrada, C. Funke, F. J. Zécri, S. Bulat, J. Am. Chem. Soc. 2005, 127, 11159.
         | Crossref | GoogleScholarGoogle Scholar |

[96]  P. D. Brown, A. C. Willis, M. S. Sherburn, A. L. Lawrence, Org. Lett. 2012, 14, 4537.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1yhsLnM&md5=062b1a2049048798d4a7caccf67b700dCAS |

[97]  W. Liu, V. Khedkar, B. Baskar, M. Schuermann, K. Kumar, Angew. Chem. Int. Ed. 2011, 50, 6900.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnsF2ksrY%3D&md5=67afdfe2bb2251be3ea837bf3c777f84CAS |

[98]  (a) C. de Graaff, E. Ruijter, R. V. A. Orru, Chem. Soc. Rev. 2012, 41, 3969.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xmt1yksLk%3D&md5=bf09083a85ce7563ed3182742f8d9dbcCAS |
      (b) S. S. van Berkel, B. G. M. Bogels, M. A. Wijdeven, B. Westermann, F. P. J. T. Rutjes, Eur. J. Org. Chem. 2012, 3543.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) E. Ruijter, R. Scheffelaar, R. V. A. Orru, Angew. Chem. Int. Ed. 2011, 50, 6234.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) D. Enders, C. Grondal, M. R. M. Huettl, Angew. Chem. Int. Ed. 2007, 46, 1570.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) D. J. Ramon, M. Yus, Angew. Chem. Int. Ed. 2005, 44, 1602.
         | Crossref | GoogleScholarGoogle Scholar |

[99]  A. Strecker, Justus Liebigs Ann. Chem. 1850, 75, 27.
         | Crossref | GoogleScholarGoogle Scholar |

[100]  A. Hantzsch, Ber. Dtsch. Chem. Ges. 1881, 14, 1637.
         | Crossref | GoogleScholarGoogle Scholar |

[101]  P. Biginelli, Ber. Dtsch. Chem. Ges. 1891, 24, 1317.
         | Crossref | GoogleScholarGoogle Scholar |

[102]  A. Endo, A. Yanagisawa, M. Abe, S. Tohma, T. Kan, T. Fukuyama, J. Am. Chem. Soc. 2002, 124, 6552.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xjs1aksLY%3D&md5=848d05cb97b96707689582b0265fb9f3CAS |

[103]  A. Dömling, Chem. Rev. 2006, 106, 17.
         | Crossref | GoogleScholarGoogle Scholar |

[104]  (a) Combining MCRs with other processes leads to some even more effective multi-bond forming processes. Some recent notable examples include: A. Znabet, J. Zonneveld, E. Janssen, F. J. J. De Kanter, M. Helliwell, N. J. Turner, E. Ruijter, R. V. A. Orru, Chem. Commun. 2010, 46, 7706.
         | 1:CAS:528:DC%2BC3cXht1Omtr%2FK&md5=bb120488cd20a7935dbc0ab8652f49efCAS |
      (b) N. Elders, D. van der Born, L. J. D. Hendrickx, B. J. J. Timmer, A. Krause, E. Janssen, F. J. J. de Kanter, E. Ruijter, R. V. A. Orru, Angew. Chem. Int. Ed. 2009, 48, 5856.
      (c) H. Mizoguchi, H. Oguri, K. Tsuge, H. Oikawa, Org. Lett. 2009, 11, 3016.
      (d) N. Kumagai, G. Muncipinto, S. L. Schreiber, Angew. Chem. Int. Ed. 2006, 45, 3635.
      (e) Synthesis using more than one MCR: O. Pando, S. Stark, A. Denkert, A. Porzel, R. Preusentanz, L. A. Wessjohann, J. Am. Chem. Soc. 2011, 133, 7692.
         | Crossref | GoogleScholarGoogle Scholar |

[105]  (a) For recent reviews on organocatalytic multi-bond forming processes, see: C. M. Marson, Chem. Soc. Rev. 2012, 41, 7712.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1ahtbrK&md5=548ddfbc81612d5ef561a12a22515c92CAS |
      (b) C. Grondal, M. Jeanty, D. Enders, Nat. Chem. 2010, 2, 167.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) H. Pellissier, Adv. Synth. Catal. 2012, 354, 237.
         | Crossref | GoogleScholarGoogle Scholar |

[106]  D. Enders, M. R. M. Huttl, C. Grondal, G. Raabe, Nature 2006, 441, 861.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XlvVGltrg%3D&md5=a9f2f3becaddbb486c16d813a4fc0584CAS |

[107]  (a) For reviews on asymmetric multicatalytic processes, see: J. Zhou, Chem. Asian J. 2010, 5, 422.
         | 1:CAS:528:DC%2BC3cXktVSmsb8%3D&md5=e0b219e8c3b5e704b174ff93f340ae2fCAS |
      (b) R. C. Wende, P. R. Schreiner, Green Chem. 2012, 14, 1821.
      (c) See also ref [88]
      (d) For an interesting recent development in multifunctional catalyst design, see: Y. Chi, S. T. Scroggins, J. M. J. Fréchet, J. Am. Chem. Soc. 2008, 130, 6322.
         | Crossref | GoogleScholarGoogle Scholar |

[108]  D. Enders, M. R. M. Hüttl, G. Raabe, J. W. Bats, Adv. Synth. Catal. 2008, 350, 267.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlt1Wit7w%3D&md5=b2103cefb8172b6c7673415445964c64CAS |

[109]  (a) For some interesting novel examples featuring dipolar cycloadditions, see: P. Garner, H. U. Kaniskan, C. M. Keyari, L. Weerasinghe, J. Org. Chem. 2011, 76, 5283.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmvFChs78%3D&md5=e5e1f01a5922acb6c612590582c229c7CAS |
      (b) P. Garner, L. Weerasinghe, W. J. Youngs, B. Wright, D. Wilson, D. Jacobs, Org. Lett. 2012, 14, 1326.
         | Crossref | GoogleScholarGoogle Scholar |

[110]  For a combination of metal cycloisomerisation and a Diels–Alder reaction, see: C. F. Bender, F. K. Yoshimoto, C. L. Paradise, J. K. D. Brabander, J. Am. Chem. Soc. 2009, 131, 11350.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXovFKltrY%3D&md5=25296557377d995ece7f01bec5c0d07eCAS |

[111]  E. Knoevenagel, Ber. Dtsch. Chem. Ges. 1898, 31, 2596.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaD28XpsF2isw%3D%3D&md5=152d8a692304de05b647f6d0c9e107a7CAS |

[112]  (a) For examples, see (and references therein): L. F. Tietze, Y. Zhou, Angew. Chem. Int. Ed. 1999, 38, 2045.
         | 1:CAS:528:DyaK1MXkslSht7c%3D&md5=ffadd7965ee323e4d4492a0f413cb93aCAS |
      (b) L. F. Tietze, N. Böhnke, S. Dietz, Org. Lett. 2009, 11, 2948.
      (c) A. L. Lawrence, R. M. Adlington, J. E. Baldwin, V. Lee, J. A. Kershaw, A. L. Thompson, Org. Lett. 2010, 12, 1676.
      (d) Y. Gao, G.-Q. Wang, K. Wei, P. Hai, F. Wang, J.-K. Liu, Org. Lett. 2012, 14, 5936.
      (e) L. F. Tietze, J. Heterocycl. Chem. 1990, 27, 47.

[113]  P. R. Nandaluru, G. J. Bodwell, Org. Lett. 2012, 14, 310.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1aqu7bI&md5=4c65e027d4e0ef64e5cd57ae298013d7CAS |

[114]  C. A. Carson, M. A. Kerr, Angew. Chem. Int. Ed. 2006, 45, 6560.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFWgu7fL&md5=5d70a2905357f960c9e1dd96bc171ed4CAS |

[115]  I. S. Young, M. A. Kerr, J. Am. Chem. Soc. 2007, 129, 1465.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlt1Cqtg%3D%3D&md5=d23920b2d486bde5d0f99da26cb1af90CAS |

[116]  P. Jakubec, A. Hawkins, W. Felzmann, D. J. Dixon, J. Am. Chem. Soc. 2012, 134, 17482.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVKmtbrK&md5=73f0ec05b039f6533d969cf592d9bc06CAS |

[117]  For an excellent review, see: B. B. Touré, D. G. Hall, Chem. Rev. 2009, 109, 4439.
         | Crossref | GoogleScholarGoogle Scholar |

[118]  (a) Recent discoveries and new applications are paving the way for future work. For some recent targeted syntheses involving a key MCR, see: T. Ritthiwigrom, S. G. Pyne, Org. Lett. 2008, 10, 2769.
         | 1:CAS:528:DC%2BD1cXms1GisLw%3D&md5=88036d24db2f4112aaa4f70a3c136f74CAS |
      (b) T. Ritthiwigrom, A. C. Willis, S. G. Pyne, J. Org. Chem. 2009, 75, 815.
      (c) L. V. Frolova, N. M. Evdokimov, K. Hayden, I. Malik, S. Rogelj, A. Kornienko, I. V. Magedov, Org. Lett. 2011, 13, 1118.

[119]  Y. Inoue, K. Ohuchi, I. F. Yen, S. Imaizumi, Bull. Chem. Soc. Jpn. 1989, 62, 3518.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXhsFOqtrY%3D&md5=6d02d0891f8d1363ab8a8d864611b877CAS |

[120]  K. C. Nicolaou, D. Sarlah, D. M. Shaw, Angew. Chem. Int. Ed. 2007, 46, 4708.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXntlOluro%3D&md5=260dd1e9a26874adadf6c36f680aae76CAS |

[121]  For a review on other MCRs involving CO, see: M. D. Mihovilovic, P. Stanetty, Angew. Chem. Int. Ed. 2007, 46, 3612.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmtVSqu7c%3D&md5=34b4d4bcb2c0d8c6c2fa5cf8fc0f21aeCAS |

[122]  (a) T. Tanino, S. Ichikawa, M. Shiro, A. Matsuda, J. Org. Chem. 2010, 75, 1366.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhslShsrs%3D&md5=023e8fde1564a0ed30e5130c3ba9907eCAS |
      (b) W. Wang, S. Joyner, K. A. S. Khoury, A. Doemling, Org. Biomol. Chem. 2010, 8, 529.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) E. Avilés, A. D. Rodriguez, Org. Lett. 2010, 12, 5290.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) J. Isaacson, Y. Kobayashi, Angew. Chem. Int. Ed. 2009, 48, 1845.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) S. Takiguchi, T. Iizuka, Y.-s. Kumakura, K. Murasaki, N. Ban, K. Higuchi, T. Kawasaki, J. Org. Chem. 2010, 75, 1126.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) T. Iizuka, S. Takiguchi, Y.-s. Kumakura, N. Tsukioka, K. Higuchi, T. Kawasaki, Tetrahedron Lett. 2010, 51, 6003.
         | Crossref | GoogleScholarGoogle Scholar |

[123]  A. Znabet, M. M. Polak, E. Janssen, F. J. J. de Kanter, N. J. Turner, R. V. A. Orru, E. Ruijter, Chem. Commun. 2010, 46, 7918.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlantrvL&md5=61facfc1055bfd2bf76c38144838bb90CAS |

[124]  (a) Y. Yip, F. Victor, J. Lamar, R. Johnson, Q. M. Wang, D. Barket, J. Glass, L. Jin, L. Liu, D. Venable, M. Wakulchik, C. Xie, B. Heinz, E. Villarreal, J. Colacino, N. Yumibe, M. Tebbe, J. Munroe, S.-H. Chen, Bioorg. Med. Chem. Lett. 2004, 14, 251.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpvVWnurk%3D&md5=80fea0cc59a2ea64a3557a41776666b8CAS |
      (b) J. A. Monn, M. J. Valli, J. Org. Chem. 1994, 59, 2773.
         | Crossref | GoogleScholarGoogle Scholar |

[125]  (a) For some recent impressive ‘one-pot’ examples, see: N. Chernyak, V. Gevorgyan, Angew. Chem. Int. Ed. 2010, 49, 2743.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXktFGrsrs%3D&md5=c56d066716f72fce1b46ee5f85bbfd6eCAS |
      (b) B.-C. Hong, P. Kotame, C.-W. Tsai, J.-H. Liao, Org. Lett. 2010, 12, 776.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) T. Sakaguchi, S. Kobayashi, S. Katsumura, Org. Biomol. Chem. 2011, 9, 257.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) For a recent application of the ‘one-pot’ strategy applied in industry, see: F. Xu, M. Zacuto, N. Yoshikawa, R. Desmond, S. Hoerrner, T. Itoh, M. Journet, G. R. Humphrey, C. Cowden, N. Strotman, P. Devine, J. Org. Chem. 2010, 75, 7829.
         | Crossref | GoogleScholarGoogle Scholar |

[126]  H. Ishikawa, M. Honma, Y. Hayashi, Angew. Chem. Int. Ed. 2011, 50, 2824.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXivVGhtLs%3D&md5=4cf81ba07f093be1ea8e38810bea1d24CAS |

[127]  H. Ishikawa, T. Suzuki, Y. Hayashi, Angew. Chem. Int. Ed. 2009, 48, 1304.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXitFymsbc%3D&md5=0d9ff9c726269ae5e23490b399664c11CAS |

[128]  B. Simmons, A. M. Walji, D. W. C. MacMillan, Angew. Chem. Int. Ed. 2009, 48, 4349.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXms12isbg%3D&md5=1b7683101fa47ca2c4795cee8895d3ebCAS |

[129]  For another recent example of the combination of organocatalysis and metal catalysis, see: W. Sun, G. Zhu, L. Hong, R. Wang, Chem.–Eur. J. 2011, 17, 13958.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVyru7%2FI&md5=4d9e686254d6609202871e0f502dfdabCAS |

[130]  H. Dückert, V. Pries, V. Khedkar, S. Menninger, H. Bruss, A. W. Bird, Z. Maliga, A. Brockmeyer, P. Janning, A. Hyman, S. Grimme, M. Schuermann, H. Preut, K. Huebel, S. Ziegler, K. Kumar, H. Waldmann, Nat. Chem. Biol. 2012, 8, 179.
         | Crossref | GoogleScholarGoogle Scholar |

[131]  (a) For some recent examples of the use of two-directional synthesis of symmetrical targets, see: R. Barth, J. Mulzer, Angew. Chem. 2007, 119, 5893.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) K. M. G. O’Connell, H. S. G. Beckmann, L. Laraia, H. T. Horsley, A. Bender, A. R. Venkitaraman, D. R. Spring, Org. Biomol. Chem. 2012, 10, 7545.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) K. C. Nicolaou, S. Totokotsopoulos, D. Giguere, Y.-P. Sun, D. Sarlah, J. Am. Chem. Soc. 2011, 133, 8150.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) Y. Morimoto, M. Takaishi, N. Adachi, T. Okita, H. Yata, Org. Biomol. Chem. 2006, 4, 3220.
         | Crossref | GoogleScholarGoogle Scholar |

[132]  (a) Terminus differentiation techniques have been neatly classified by Schreiber: C. S. Poss, S. L. Schreiber, Acc. Chem. Res. 1994, 27, 9.
         | 1:CAS:528:DyaK2cXns1KgtQ%3D%3D&md5=8a7047582a7a3c7059e8204dfa0638ccCAS |
      (b) For a review, see: S. R. Magnuson, Tetrahedron 1995, 51, 2167.
         | Crossref | GoogleScholarGoogle Scholar |

[133]  N. Ikemoto, S. L. Schreiber, J. Am. Chem. Soc. 1992, 114, 2524.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XhsFahtbs%3D&md5=ef9bfe3de5e9648598b6c1cfdc2a4a77CAS |

[134]  C. S. Poss, S. D. Rychnovsky, S. L. Schreiber, J. Am. Chem. Soc. 1993, 115, 3360.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXkt1Ortbg%3D&md5=c3fe03377238f69b6ba82276f06c1d93CAS |

[135]  Y. Zhang, C. C. Arpin, A. J. Cullen, M. J. Mitton-Fry, T. Sammakia, J. Org. Chem. 2011, 76, 7641.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFOqu7%2FJ&md5=577f9c420131cc2eb35eb88f9c910537CAS |

[136]  Y. Wang, O. Kataeva, P. Metz, Adv. Synth. Catal. 2009, 351, 2075.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtF2hu7fM&md5=31faadfe543276da0b4ff4d651d82f96CAS |

[137]  E. W. Rogers, T. F. Molinski, J. Org. Chem. 2009, 74, 7660.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFWqt7rK&md5=3d74ec7962862bed71757f624f3a7fc6CAS |

[138]  N. R. Norcross, J. P. Melbardis, M. F. Solera, M. A. Sephton, C. Kilner, L. N. Zakharov, P. C. Astles, S. L. Warriner, P. R. Blakemore, J. Org. Chem. 2008, 73, 7939.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFeqs7rF&md5=b3c0cd51577e2a94f02f7c45c785524eCAS |

[139]  J. M. Holland, M. Lewis, A. Nelson, J. Org. Chem. 2003, 68, 747.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XpvVantLk%3D&md5=05dee97027d4c69cc1eb0125950ec34eCAS |

[140]  C. J. Exner, M. Turks, F. Fonquerne, P. Vogel, Chem. – Eur. J. 2011, 17, 4246.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjvVShsbo%3D&md5=c699e7342c1d7289ab5b43058143ad74CAS |

[141]  (a) D. Robbins, A. F. Newton, C. Gignoux, J.-C. Legeay, A. Sinclair, M. Rejzek, C. A. Laxon, S. K. Yalamanchili, W. Lewis, M. A. O’Connell, R. A. Stockman, Chem. Sci. 2011, 2, 2232.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht12isrrP&md5=efef1d47a4a2a1085286921a5912ff04CAS |
      (b) A. F. Newton, S. J. Roe, J.-C. Legeay, P. Aggarwal, C. Gignoux, N. J. Birch, R. Nixon, M.-L. Alcaraz, R. A. Stockman, Org. Biomol. Chem. 2009, 7, 2274.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) P. Aggarwal, G. Procopiou, D. Robbins, G. Harbottle, W. Lewis, R. A. Stockman, Synlett 2012, 423.

[142]  C. Gignoux, A. F. Newton, A. Barthelme, W. Lewis, M.-L. Alcaraz, R. A. Stockman, Org. Biomol. Chem. 2012, 10, 67.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFKmtbjF&md5=a1e352186eda1994b240848e631c3e83CAS |

[143]  D. Liu, H. P. Acharya, M. Yu, J. Wang, V. S. C. Yeh, S. Kang, C. Chiruta, S. M. Jachak, D. L. J. Clive, J. Org. Chem. 2009, 74, 7417.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFWqurnP&md5=4c23ec7e61cf30651cfadc9e87f695f7CAS |

[144]  B. B. Liau, B. C. Milgram, M. D. Shair, J. Am. Chem. Soc. 2012, 134, 16765.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhtlekt7jJ&md5=1ebe727d9d7f8b345a03e8dd84d8550aCAS |

[145]  For another recent example of two-fold reaction sequences on pseudo-symmetrical substrates, see: E. Airiau, T. Spangenberg, N. Girard, B. Breit, A. Mann, Org. Lett. 2010, 12, 528.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhs1WjsLfO&md5=69ec30e6ae0adae274341820b88112dcCAS |

[146]  J. A. Berson, Tetrahedron 1992, 48, 3.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XhtVGiurg%3D&md5=a94d8733e81344b26fccc1c3feb116b5CAS |

[147]  M. Potowski, M. Schurmann, H. Preut, A. P. Antonchick, H. Waldmann, Nat. Chem. Biol. 2012, 8, 428.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XktVaksrY%3D&md5=926917bd8023964f54ad820bcfedea84CAS |

[148]  A. H. Hoveyda, A. R. Zhugralin, Nature 2007, 450, 243.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1yntrvN&md5=1e795bfcf02807427c711e020e349276CAS |

[149]  J. S. Clark, M. C. Kimber, J. Robertson, C. S. P. McErlean, C. Wilson, Angew. Chem. Int. Ed. 2005, 44, 6157.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFWisLbP&md5=1c49ddf727c839928307aa7bfa1a0ec3CAS |

[150]  J. S. Clark, O. Hamelin, Angew. Chem. Int. Ed. 2000, 39, 372.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXns1GhsA%3D%3D&md5=4cbe5c0e5a65e0a7017463fddf116a1cCAS |

[151]  Y. Zhang, J. D. Rainier, Org. Lett. 2009, 11, 237.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVCgu73F&md5=177d0c90bcb2c55cc4866c78752146e0CAS |

[152]  G. Matsuo, K. Kawamura, N. Hori, H. Matsukura, T. Nakata, J. Am. Chem. Soc. 2004, 126, 14374.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXos1Wju7o%3D&md5=ba59e4622d49408603413faa637fe8a8CAS |

[153]  C. Baylon, M.-P. Heck, C. Mioskowski, J. Org. Chem. 1999, 64, 3354.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXitFSgsrk%3D&md5=7f600995e20286e6d2bb589b2871eb6fCAS |

[154]  K. C. Nicolaou, D. G. McGarry, P. K. Sommers, J. Am. Chem. Soc. 1990, 112, 3696.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXitlGjsbY%3D&md5=e5e10b7d20b06ebf6f487ec09a3d651dCAS |

[155]  (a) J. L. Ravelo, A. Regueiro, J. D. Martin, Tetrahedron Lett. 1992, 33, 3389.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XltFWgtL0%3D&md5=2ff332de9b8f4e43a0341af23c3b14e2CAS |
      (b) For a recent example from the same laboratory, see: B. Cheng, J. D. Sunderhaus, S. F. Martin, Org. Lett. 2010, 12, 3622.
         | Crossref | GoogleScholarGoogle Scholar |

[156]  K. S. Feldman, B. K. Selfridge, Org. Lett. 2012, 14, 5484.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFamtrjK&md5=d107161c778a2a614d468ff94e4ef18aCAS |

[157]  M. W. B. Pfeiffer, A. J. Phillips, J. Am. Chem. Soc. 2005, 127, 5334.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXis1ens7g%3D&md5=ddd061885729ac09eae16b663749d992CAS |

[158]  D. Morton, S. Leach, C. Cordier, S. Warriner, A. Nelson, Angew. Chem. Int. Ed. 2009, 48, 104.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXosFGmsQ%3D%3D&md5=56891319323fb1dcecfaf8b93de4eb42CAS |

[159]  (a) S.-H. Kim, N. Bowden, R. H. Grubbs, J. Am. Chem. Soc. 1994, 116, 10801.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXhslyisbg%3D&md5=e2834f261abb723d0c95f7a2a533ef24CAS |
      (b) S.-H. Kim, W. J. Zuercher, N. B. Bowden, R. H. Grubbs, J. Org. Chem. 1996, 61, 1073.
         | Crossref | GoogleScholarGoogle Scholar |

[160]  W. J. Zuercher, M. Scholl, R. H. Grubbs, J. Org. Chem. 1998, 63, 4291.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjslKntrs%3D&md5=50d1e4cb1968adc5caceb119600676c1CAS |

[161]  (a) For reviews, see: S. T. Diver, A. J. Giessert, Chem. Rev. 2004, 104, 1317.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhvFGgs7g%3D&md5=0a686e925c5a6700a3ae3274b1ec0f3eCAS |
      (b) M. Mori, Adv. Synth. Catal. 2007, 349, 121.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) J. Li, D. Lee, Eur. J. Org. Chem. 2011, 4269.
         | Crossref | GoogleScholarGoogle Scholar |

[162]  L. Chang, H. Jiang, J. Fu, B. Liu, C.-c. Li, Z. Yang, J. Org. Chem. 2012, 77, 3609.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xjs1Oit78%3D&md5=3e47192005533773d6911350e3c5c8e6CAS |

[163]  Y. Adachi, N. Kamei, S. Yokoshima, T. Fukuyama, Org. Lett. 2011, 13, 4446.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpsFSrtrc%3D&md5=bdcf50ce95755a2e53478954db1646c9CAS |

[164]  M. Schubert, P. Metz, Angew. Chem. Int. Ed. 2011, 50, 2954.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjt1yqu7s%3D&md5=aa57e242dba9f6a50e264e252268598fCAS |

[165]  H. Oguri, T. Hiruma, Y. Yamagishi, H. Oikawa, A. Ishiyama, K. Otoguro, H. Yamada, S. Ōmura, J. Am. Chem. Soc. 2011, 133, 7096.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjsVGjsL8%3D&md5=4d839334ec35326873939833b25ea4bcCAS |

[166]  D. S. Siegel, G. Piizzi, G. Piersanti, M. Movassaghi, J. Org. Chem. 2009, 74, 9292.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVOhtr%2FE&md5=4f535f0b4dbfaa92e5bd94bb9b98a761CAS |

[167]  J. Ramharter, H. Weinstabl, J. Mulzer, J. Am. Chem. Soc. 2010, 132, 14338.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1WmtrjN&md5=58e6cda9f9de8c5d6c12fdd0ca52e9ccCAS |

[168]  S. Mukherjee, D. Lee, Org. Lett. 2009, 11, 2916.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXntVSku7k%3D&md5=7a26e80198acd6fcc01b96d74cac6808CAS |

[169]  (a) Metathesis also features in some impressive, enantioselective domino sequences, for reviews see: S. Kress, S. Blechert, Chem. Soc. Rev. 2012, 41, 4389.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XnsF2qs7g%3D&md5=ac6c9ab3c851459e3c93250a8e10846fCAS |
      (b) A. H. Hoveyda, S. J. Malcolmson, S. J. Meek, A. R. Zhugralin, Angew. Chem. Int. Ed. 2010, 49, 34.
         | Crossref | GoogleScholarGoogle Scholar |

[170]  (a) D. Banti, M. North, Tetrahedron Lett. 2002, 43, 1561.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xpsl2quw%3D%3D&md5=a503156701c06cabb986aa78daadd17eCAS |
      (b) D. Banti, M. North, Adv. Synth. Catal. 2002, 344, 694.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) For an even more recent example of the combined metathesis-Diels–Alder approach, see: A. Aljarilla, M. C. Murcia, A. G. Csákÿ, J. Plumet, Eur. J. Org. Chem. 2009, 822.
         | Crossref | GoogleScholarGoogle Scholar |

[171]  J. A. Enquist, B. M. Stoltz, Nature 2008, 453, 1228.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnslGksb8%3D&md5=570de207e9950ed42d1626cdb95c63a3CAS |

[172]  (a) J. Tsuji, I. Minami, I. Shimizu, Tetrahedron Lett. 1983, 24, 1793.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXltVCrsb4%3D&md5=7501876f9d316b0f2969cb14a75f8e98CAS |
      (b) B. M. Trost, T. J. Fullerton, J. Am. Chem. Soc. 1973, 95, 292.
         | Crossref | GoogleScholarGoogle Scholar |

[173]  J. A. Enquist, S. C. Virgil, B. M. Stoltz, Chem. – Eur. J. 2011, 17, 9957.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXptVehtbY%3D&md5=9363a1ef2bfa7c8727aef486aae7afa8CAS |

[174]  The syntheses of dendrimers provide examples of high order multi-directional synthesis. For a review, see: T. Iizuka, S. Takiguchi, Y.-s. Kumakura, N. Tsukioka, K. Higuchi, T. Kawasaki, Tetrahedron Lett. 2010, 51, 6003.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlSmt7jM&md5=aea67c42032f3a48823ec2ad75f3c6c9CAS |

[175]  H. Hopf, M. S. Sherburn, Angew. Chem. Int. Ed. 2012, 51, 2298.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xitlygsr0%3D&md5=d66e3c468bf87f476b994cc12933fed1CAS |

[176]  G. Bojase, T. V. Nguyen, A. D. Payne, A. C. Willis, M. S. Sherburn, Chem. Sci. 2011, 2, 229.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmsVOjtg%3D%3D&md5=d584ea413b808284b521567ee0e66a4eCAS |

[177]  G. A. Crispino, P. T. Ho, K. B. Sharpless, Science 1993, 259, 64.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXitFansbg%3D&md5=466da22396e56ff6b047b4b03fcbe3c3CAS |

[178]  (a) From an achiral starting material, an enantiomeric ratio of approximately 105 : 1 is generated by virtue of an effect known as the Horeau principle. See W. Langenbeck, G. Triem, Z. Physik. Chem. 1936, A177, 401.
         | 1:CAS:528:DyaA2sXhslyhuw%3D%3D&md5=f2a6c138793fb37060b9c901fa20e26eCAS |
      (b) J. P. Vigneron, M. Dhaenens, A. Horeau, Tetrahedron 1973, 29, 1055.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) V. Rautenstrauch, Bull. Soc. Chim. Fr. 1994, 131, 515.
      (d) D. S. Glueck, Catal. Sci. Technol. 2011, 1, 1099.
         | Crossref | GoogleScholarGoogle Scholar |

[179]  For a recent example of this effect in independent reactions, see: S. Bell, B. Wüstenberg, S. Kaiser, F. Menges, T. Netscher, A. Pfaltz, Science 2006, 311, 642.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XptVyksg%3D%3D&md5=527005615a185a4c907605415dc71e64CAS |

[180]  Z. Xiong, E. J. Corey, J. Am. Chem. Soc. 2000, 122, 9328.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmt1WitLo%3D&md5=ee44c76765d9e741173fa04cf5006686CAS |

[181]  (a) I. Paterson, E. A. Anderson, S. M. Dalby, J. H. Lim, P. Maltas, C. Moessner, Chem. Commun. 2006, 4186.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVCru7bP&md5=6d3348ac7210e25f8b3620ea0d9e583cCAS |
      (b) A second-generation synthesis has recently been completed utilising this methodology: I. Paterson, P. Maltas, S. M. Dalby, J. H. Lim, E. A. Anderson, Angew. Chem. Int. Ed. 2012, 51, 2749.
         | Crossref | GoogleScholarGoogle Scholar |

[182]  C. H. Heathcock, Angew. Chem. Int. Ed. Engl. 1992, 31, 665.
         | Crossref | GoogleScholarGoogle Scholar |