Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

Silica Immobilized Hoveyda Type Pre-Catalysts: Convenient and Reusable Heterogeneous Catalysts for Batch and Flow Olefin Metathesis

Wladimir Solodenko A , Angelino Doppiu B , René Frankfurter C , Carla Vogt C and Andreas Kirschning A D
+ Author Affiliations
- Author Affiliations

A Institute of Organic Chemistry and Center of Biomolecular Drug Research (BMWZ), Leibniz Universität Hannover, Schneiderberg 1b, D-30167 Hannover, Germany.

B Umicore AG & Co. KG, Precious Metals Chemistry, Rodenbacher Chaussee 4, D-63457 Hanau-Wolfgang, Germany.

C Institute of Inorganic and Analytical Chemistry, Leibniz Universität Hannover, Callinstrasse 1, D-30167 Hannover, Germany.

D Corresponding author. Email: andreas.kirschning@oci.uni-hannover.de

Australian Journal of Chemistry 66(2) 183-191 https://doi.org/10.1071/CH12434
Submitted: 22 September 2012  Accepted: 14 November 2012   Published: 9 January 2013

Abstract

Two Hoveyda type ruthenium metathesis precatalysts, Umicore M51 and Umicore M71 SIMES, were immobilized on commercial silica in a simple and fast procedure through direct interaction with the support surface. These precatalysts exhibited good activity in ring-closing, cross, and enyne metathesis reactions and were stable in terms of reusability to be used for consecutive runs under both batch and flow conditions. In non-polar media, the catalytic activity of the precatalysts is truly based on a heterogeneous species, and the contamination of the products with ruthenium was very low with respect to starting catalyst (0.003–0.01 %; 0.13–0.44 ppm). If necessary, such as in solvents like toluene, the ruthenium content can easily be reduced to levels below 0.5 ppm by treatment of the crude metathesis products with the commercial scavenger QuadraSil AP or by use of an additional QuadraSil AP scavenger cartridge under flow conditions.


References

[1]     (a) Handbook of Metathesis (Ed. R. H. Grubbs) 2003 (Wiley-VCH: Weinheim).
      (b) G. C. Vougioukalakis, R. H. Grubbs, Chem. Rev. 2010, 110, 1746.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  (a) For recent reviews see: W.-Y. Siau, Y. Zhang, Y. Zhao, Top. Curr. Chem. 2012, 327, 33.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvV2gu7nF&md5=761cb77340370082323e5a864407ba90CAS |
      (b) S. J. Meek, R. V. O’Brien, J. Llaveria, R. R. Schrock, A. H. Hoveyda, Nature 2011, 471, 461.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) K. Endo, R. H. Grubbs, J. Am. Chem. Soc. 2011, 133, 8525.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) B. K. Keitz, K. Endo, M. B. Herbert, R. H. Grubbs, J. Am. Chem. Soc. 2011, 133, 9686.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  For a review on sustainable metathesis see: H. Clavier, K. Grela, A. Kirschning, M. Mauduit, S. P. Nolan, Angew. Chem. Int. Ed. 2007, 46, 6786.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFamsLnF&md5=1a0ef656e882a2af4fa0b35b2fa19113CAS |

[4]  (a) D. Barbaras, J. Brozio, I. Johannsen, T. Allmendinger, Org. Process Res. Dev. 2009, 13, 1068.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht12iu7rI&md5=5fd1c093c43eaed180a521015cb67682CAS |
      (b) For oral and parenteral drug products, contamination with ruthenium must be less than 5 ppm and 0.5 ppm, respectively, according to the guidelines of the European Agency for the Evaluation of Medicinal Products: A. Thayer, Chem. Eng. News 2005, 83, 55.

[5]  C. Coperet, J.-M. Basset, Adv. Synth. Catal. 2007, 349, 78.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhs1aht70%3D&md5=fdd72ad670536e39941267a660e7cc78CAS |

[6]  (a) For reviews on ionic liquid supported catalysts see: L. Gulajski, M. Mauduit, K. Grela, Pure Appl. Chem. 2009, 81, 2001.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFSit7bP&md5=af2194ac36143edb4eda9cbf87b02410CAS |
      (b) P. Sledz, M. Mauduit, K. Grela, Chem. Soc. Rev. 2008, 37, 2433.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  (a) A. Michrowska, K. Mennecke, U. Kunz, A. Kirschning, K. Grela, J. Am. Chem. Soc. 2006, 128, 13261.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XpsF2iurk%3D&md5=a79ef0ff392e908de1114929ce956df5CAS |
      (b) E. Borré, M. Rouen, I. Laurent, M. Magrez, F. Caijo, C. Crévisy, W. Solodenko, L. Toupet, R. Frankfurter, C. Vogt, A. Kirschning, M. Mauduit, Chem. – Eur. J. 2012in press.,
         | Crossref | GoogleScholarGoogle Scholar |

[8]  (a) N. Audic, H. Clavier, M. Mauduit, J. C. Guillemin, J. Am. Chem. Soc. 2003, 125, 9248.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXltlOksrg%3D&md5=304e5f45734449bd802ae1d1a4960f05CAS |
      (b) H. Clavier, N. Audic, J.-C. Guillemin, M. Mauduit, Chem. Commun. 2004, 1224.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) H. Clavier, N. Audic, J.-C. Guillemin, M. Mauduit, J. Organomet. Chem. 2005, 690, 3585.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) D. Rix, H. Clavier, Y. Coutard, L. Gulajski, K. Grela, M. Mauduit, J. Organomet. Chem. 2006, 691, 5397.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) D. Rix, F. Caijo, I. Laurent, L. Gulajski, K. Grela, M. Mauduit, Chem. Commun. 2007, 3771.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) E. Borre, F. Caijo, C. Crevisy, M. Mauduit, Chim. Oggi 2009, 27, 20.
      (g) H. Clavier, S. P. Nolan, M. Mauduit, Organometallics 2008, 27, 2287.
         | Crossref | GoogleScholarGoogle Scholar |
      (h) Q. Yao, Y. Zhang, Angew. Chem. Int. Ed. 2003, 42, 3395.
         | Crossref | GoogleScholarGoogle Scholar |
      (i) Q. Yao, M. Sheets, J. Organomet. Chem. 2005, 690, 3577.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  G. Liu, B. Wu, J. Zhang, X. Wand, M. Shao, J. Wang, Inorg. Chem. 2009, 48, 2383.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhvVOjtb4%3D&md5=1f5193596b0b11c1d87091eeca1be151CAS |

[10]  B. Van Berlo, K. Houthoofd, B. F. Sels, P. A. Jacobs, Adv. Synth. Catal. 2008, 350, 1949.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtF2gurvN&md5=9ff79c9a19efb3cdd1a0ec95cc530ce4CAS |

[11]  H. Balcar, T. Shinde, N. Zilkova, Z. Bastl, Beilstein J. Org. Chem. 2011, 7, 22.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFWgtrc%3D&md5=fa2300cbb68bce4233641a14405dc65fCAS |

[12]  G. Jas, A. Kirschning, Chem. – Eur. J. 2003, 9, 5708.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhvVCl&md5=fc4bd945df066b1947d0c32392314e96CAS |

[13]  (a) Selected reviews on flow synthesis from the past 3 years: J. Wegner, S. Ceylan, A. Kirschning, Adv. Synth. Catal. 2012, 354, 17.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xmt1GrtQ%3D%3D&md5=cbb7c15ba43387e8fdc4ba0624ff5a79CAS |
      (b) R. Yuryev, S. Strompen, A. Liese, Beilstein J. Org. Chem. 2011, 7, 1449.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) J. Wegner, S. Ceylan, A. Kirschning, Chem. Commun. 2011, 47, 4583.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) J. P. McMullen, K. F. Jensen, Annu. Rev. Anal. Chem. 2010, 3, 19.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) J.-I. Yoshida, H. Kim, A. Nagaki, ChemSusChem 2011, 4, 331.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) D. Webb, T. F. Jamison, Chem. Sci. 2010, 1, 675.
         | Crossref | GoogleScholarGoogle Scholar |
      (g) S. Marre, K. F. Jensen, Chem. Soc. Rev. 2010, 39, 1183.
         | Crossref | GoogleScholarGoogle Scholar |
      (h) T. Illg, P. Löb, V. Hessel, Bioorg. Med. Chem. 2010, 18, 3707.
         | Crossref | GoogleScholarGoogle Scholar |
      (i) J.-I. Yoshida, Chem. Rec. 2010, 10, 332.
         | Crossref | GoogleScholarGoogle Scholar |
      (j) C. G. Frost, L. Mutton, Green Chem. 2010, 12, 1687.
         | Crossref | GoogleScholarGoogle Scholar |
      (k) X. Y. Mak, P. Laurino, P. H. Seeberger, Beilstein J. Org. Chem. 2009, 5, No. 19.
         | Crossref | GoogleScholarGoogle Scholar |
      (l) M. Baumann, I. R. Baxendale, S. V. Ley, Mol. Diversity 2011, 15, 613.
         | Crossref | GoogleScholarGoogle Scholar |
      (m) C. Wiles, P. Watts, Green Chem. 2012, 14, 38.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  Complexes M1TM 1a (WO2010/037550A1), M2TM 1b (WO00/15339A1), M22TM 1c (WO2011/117571A1), M31TM 1d (WO00/15339A1), M41TM 1e and M42TM 1f (WO03/062253A1), M51TM 1g (WO2008/034552A1) and M71 SIMESTM 1h (WO2008/065187A1) are subject to patent protection and are available from Umicore AG & Co KG. Terms and conditions are available upon request.

[15]  Silica gel 60 for column chromatography, 0.040–0.063 mm, pre-dried under high vacuum at 120°C over phosphorus pentoxide for 5 h.

[16]  A similar observation was reported by H. Clavier, S.P. Nolan, Chem. – Eur. J. 2007, 13, 8029.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFOqtrjF&md5=e4305a0e624002803436d9a54adae24aCAS |

[17]  M. Bieniek, R. Bujok, M. Cabaj, N. Lugan, G. Lavagne, D. Arlt, K. Grela, J. Am. Chem. Soc. 2006, 128, 13652.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVegtrjE&md5=02e6bc6ff61f3f5f98c012c5d6d6746aCAS |

[18]  N. T. S. Phan, M. V. der Sluys, C. W. Jones, Adv. Synth. Catal. 2006, 348, 609.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjvVCrtL8%3D&md5=e52bad8d1c9e095ecfe15c527789a545CAS |

[19]  J. Lim, S. S. Lee, J. Y. Ying, Chem. Commun. 2010, 46, 806.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnt1OqtQ%3D%3D&md5=9827288fe57cdcdd2e977283791db27bCAS |

[20]  A. Hinchcliffe, C. Hughes, D. A. Pears, M. R. Pitts, Org. Process Res. Dev. 2007, 11, 477.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXks1Klu74%3D&md5=cf06729f083a511cf452041fe5d2b7e0CAS |

[21]  T. A. Kirkland, R. H. Grubbs, J. Org. Chem. 1997, 62, 7310.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmvVCltrc%3D&md5=e0eb12ae23e9fd56776ef1e919477596CAS |

[22]  A. Tokuyasu, S. Kunikawa, K. J. McCullough, A. Masuyama, M. Nojima, J. Org. Chem. 2005, 70, 251.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVGhtrzN&md5=2404c40ee1cd1ac3a95b52361478de22CAS |

[23]  J. A. Bodkin, G. B. Bacskay, M. D. McLeod, Org. Biomol. Chem. 2008, 6, 2544.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXotVykurk%3D&md5=960f6444d21c7382c42a0ec56f3ea3daCAS |

[24]  W. A. Nugent, J. Feldman, J. C. Calabrese, J. Am. Chem. Soc. 1995, 117, 8992.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXnsFWisbw%3D&md5=a246e0d0d08313b038344acfc44c0033CAS |

[25]  D. Rix, F. Caijo, I. Laurent, F. Boeda, H. Clavier, S. P. Nolan, M. Mauduit, J. Org. Chem. 2008, 73, 4225.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlslamsLk%3D&md5=cbf8130e9cc2b05014bd392591cdb6d5CAS |

[26]  A. Fürstner, L. Ackermann, B. Gabor, R. Goddard, C. W. Lehmann, R. Mynott, F. Stelzer, O. R. Thiel, Chem. – Eur. J. 2001, 7, 3236.
         | Crossref | GoogleScholarGoogle Scholar |