Simple Method and Materials to Target Co(ii)-Dy(iii) Multi-Nuclear Magnetic Compounds and Single Molecule Magnets (SMMs): Synthesis, Structure, and Magnetic Studies
Yan Zhu A , Feng Luo A B , Xue-Feng Feng A , Zhen-Wei Liao A , Yu-Mei Song A , Hai-Xiao Huang A , Xiao-Zhao Tian A , Gong-Ming Sun A and Ming-Biao Luo AA College of Biology, Chemistry and Material Science, East China Institute of Technology, Fuzhou, 344000 Jiangxi, P. R. China.
B Corresponding author. Email: ecitluofeng@163.com
Australian Journal of Chemistry 66(1) 75-83 https://doi.org/10.1071/CH12336
Submitted: 18 July 2012 Accepted: 1 September 2012 Published: 4 October 2012
Abstract
In this work, based on mixed N-, O-donor ligands, a series of Co(ii)-Dy(iii) compounds are synthesised and characterised by single crystal X-ray diffraction and magnetic studies. These compounds include Co2(phen)2Dy(PhCOO)7 (1), Co2(phen)2Dy2(PhCOO)10 (2), Co(bpy)Dy(H2O)(CH3-PhCOO)5 (3), Co(phen)Dy(H2O)(CH3-PhCOO)5 (4), Co2(phen)2Dy(NO2-PhCOO)7 (5), Co2(phen)2Dy2(NO2-PhCOO)10 (6), and Co2(bpy)2Dy2(NO2-PhCOO)10 (7), where phen, bpy, CH3-PhCOOH, and NO2-PhCOOH are 1,10-phenanthroline, 2,2′-bipyridine, 3-methylbenzoic acid, and 3-nitrobenzoic acid, respectively. In these cases, di-, tri-, and tetranuclear Co-Dy clusters are observed. Direct current (DC) magnetic susceptibility reveals ferromagnetic or antiferromagnetic behaviour, whilst dynamic magnetic studies disclose single molecule magnet (SMM)-like slow magnetic relaxation for most of these compounds.
References
[1] (a) Y.-Z. Zheng, M. Evangelisti, R. E. P. Winpenny, Angew. Chem. Int. Ed. 2011, 50, 3692.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkt12jt7s%3D&md5=f4849306672f2ce9175ed9ae16ccb8a1CAS |
(b) S. K. Langley, N. F. Chilton, B. Moubaraki, T. Hooper, E. K. Brechin, M. Evangelisti, K. S. Murray, Chem. Sci. 2011, 2, 1166.
| Crossref | GoogleScholarGoogle Scholar |
[2] (a) R. Sessoli, H.-L. Tsai, A. R. Schake, S. Wang, J. B. Vincent, K. Folting, D. Gatteschi, G. Christou, D. N. Hendrickson, J. Am. Chem. Soc. 1993, 115, 1804.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXptlymtg%3D%3D&md5=bee09c7d1de84bd839e8719e632c7fbdCAS |
(b) E. C. Sañudo, W. Wernsdorfer, K. A. Abboud, G. Christou, Inorg. Chem. 2004, 43, 4137.
| Crossref | GoogleScholarGoogle Scholar |
(c) A. M. Ako, I. J. Hewitt, V. Mereacre, R. Clérac, W. Wernsdorfer, C. E. Anson, A. K. Powell, Angew. Chem. 2006, 118, 5048.
| Crossref | GoogleScholarGoogle Scholar |
[3] (a) M. N. Leuenberger, D. Loss, Nature 2001, 410, 789.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjtVeltrY%3D&md5=e585d3e49a5562fd572a48d04b7242caCAS |
(b) L. Bogani, W. Wernsdorfer, Nat. Mater. 2008, 7, 179.
| Crossref | GoogleScholarGoogle Scholar |
(c) W. Wernsdorfer, Int. J. Nanotechnol. 2010, 7, 497.
| Crossref | GoogleScholarGoogle Scholar |
(d) A. Mishra, W. Wernsdorfer, S. Parsons, G. Christou, E. K. Brechin, Chem. Commun. 2005, 2086.
| Crossref | GoogleScholarGoogle Scholar |
(e) A. Mishra, W. Wernsdorfer, K. A. Abboud, G. Christou, J. Am. Chem. Soc. 2004, 126, 15648.
| Crossref | GoogleScholarGoogle Scholar |
[4] (a) E. K. Brechin, Chem. Commun. 2005, 5141.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFajtL%2FI&md5=0ecb63e06c4d492f025b7768fa88d999CAS |
(b) A. J. Tasiopoulos, S. P. Perlepes, Dalton Trans. 2008, 5537.
| Crossref | GoogleScholarGoogle Scholar |
(c) E. C. Yang, D. N. Hendrickson, W. Wernsdorfer, M. Nakano, L. N. Zakharov, R. D. Sommer, A. L. Rheingold, M. Ledezma-Gairaud, G. Christou, J. Appl. Phys. 2002, 91, 7382.
| Crossref | GoogleScholarGoogle Scholar |
(d) M. Murrie, S. J. Teat, H. Stoeckli-Evans, H. U. Güdel, Angew. Chem. Int. Ed. 2003, 42, 4653.
| Crossref | GoogleScholarGoogle Scholar |
(e) S. J. Langley, M. Helliwell, R. Sessoli, P. Rosa, W. Wernsdorfer, R. E. P. Winpenny, Chem. Commun. 2005, 40, 5029.
| Crossref | GoogleScholarGoogle Scholar |
(f) Y.-Z. Zhang, W. Wernsdorfer, F. Pan, Z.-M. Wang, S. Gao, Chem. Commun. 2006, 3302.
| Crossref | GoogleScholarGoogle Scholar |
(g) M.-H. Zeng, M.-X. Yao, H. Liang, W.-X. Zhang, X.-M. Chen, Angew. Chem. Int. Ed. 2007, 46, 1832.
| Crossref | GoogleScholarGoogle Scholar |
[5] (a) L. M. Toma, R. Lescouezec, J. Pasan, C. Ruiz-Perez, J. Vaissermann, J. Cano, R. Carrasco, W. Wernsdorfer, F. Lloret, M. Julve, J. Am. Chem. Soc. 2006, 128, 4842.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xis1Kiu7w%3D&md5=5974e8651b02a8484f301a2d48a70811CAS |
(b) L. Bogani, C. Sangregorio, R. Sessoli, D. Gatteschi, Angew. Chem. Int. Ed. 2005, 44, 5817.
| Crossref | GoogleScholarGoogle Scholar |
[6] (a) N. Ishikawa, M. Sugita, T. Okubo, N. Tanaka, T. Iino, Y. Kaizu, Inorg. Chem. 2003, 42, 2440.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhslynt7Y%3D&md5=1e7bf0cfee13a3e660535020301db026CAS |
(b) N. Ishikawa, J. Phys. Chem. A 2003, 107, 5831.
| Crossref | GoogleScholarGoogle Scholar |
(c) N. Ishikawa, M. Sugita, T. Ishikawa, S. Y. Koshihara, Y. Kaizu, J. Am. Chem. Soc. 2003, 125, 8694.
| Crossref | GoogleScholarGoogle Scholar |
(d) N. Ishikawa, M. Sugita, T. Ishikawa, S. Y. Koshihara, Y. Kaizu, J. Phys. Chem. B 2004, 108, 11265.
| Crossref | GoogleScholarGoogle Scholar |
(e) N. Ishikawa, M. Sugita, W. Wernsdorfer, J. Am. Chem. Soc. 2005, 127, 3650.
| Crossref | GoogleScholarGoogle Scholar |
(f) N. Ishikawa, Polyhedron 2007, 26, 2147.
| Crossref | GoogleScholarGoogle Scholar |
(g) S. Takamatsu, N. Ishikawa, Polyhedron 2007, 26, 1859.
| Crossref | GoogleScholarGoogle Scholar |
(h) M. A. AlDamen, J. M. Clemente-Juan, E. Coronado, C. MartÍ-Gastaldo, A. Gaita-Ariño, J. Am. Chem. Soc. 2008, 130, 8874.
| Crossref | GoogleScholarGoogle Scholar |
(i) M. A. AlDamen, S. Cardona-Serra, J. M. Clemente-Juan, E. Coronado, A. Gaita-Ariño, C. MartÍ-Gastaldo, F. Luis, O. Montero, Inorg. Chem. 2009, 48, 3467.
| Crossref | GoogleScholarGoogle Scholar |
(j) D. P. Li, T. W. Wang, C. H. Li, D. S. Liu, Y. Z. Li, X. Z. You, Chem. Commun. 2010, 46, 2929.
| Crossref | GoogleScholarGoogle Scholar |
[7] (a) Y. G. Huang, F. L. Jiang, M. C. Hong, Coord. Chem. Rev. 2009, 253, 2814.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlagtrfK&md5=764df23623a2119d4d6c61326b64a0d8CAS |
(b) C. Papatriantafyllopoulou, W. Wernsdorfer, K. A. Abboud, G. Christou, Inorg. Chem. 2011, 50, 421.
| Crossref | GoogleScholarGoogle Scholar |
(c) G. Rigaux, R. Inglis, S. Morrison, A. Prescimone, C. Cadiou, M. Evangelisti, E. K. Brechin, Dalton Trans. 2011, 40, 4797.
| Crossref | GoogleScholarGoogle Scholar |
[8] (a) M. Li, Y. Lan, A. M. Ako, W. Wernsdorfer, C. E. Anson, G. Buth, A. K. Powell, Z. Wang, S. Gao, Inorg. Chem. 2010, 49, 11587.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVSlt7%2FO&md5=19c60c422b8233a95aec6b904ddb126dCAS |
(b) A. M. Ako, V. Mereacre, R. Clérac, W. Wernsdorfer, I. J. Hewitt, C. E. Anson, A. K. Powell, Chem. Commun. 2009, 544.
| Crossref | GoogleScholarGoogle Scholar |
(c) V. Mereacre, A. M. Ako, R. Clérac, W. Wernsdorfer, I. J. Hewitt, C. E. Anson, A. K. Powell, Chem. – Eur. J. 2008, 14, 3577.
| Crossref | GoogleScholarGoogle Scholar |
(d) V. M. Mereacre, A. M. Ako, R. Clérac, W. Wernsdorfer, G. Filoti, J. Bartolom, C. E. Anson, A. K. Powell, J. Am. Chem. Soc. 2007, 129, 9248.
| Crossref | GoogleScholarGoogle Scholar |
(e) M. Murugesu, A. Mishra, W. Wernsdorfer, K. A. Abboud, G. Christou, Polyhedron 2006, 25, 613.
| Crossref | GoogleScholarGoogle Scholar |
[9] C. Aronica, G. Pilet, G. Chastanet, W. Wernsdorfer, J.-F. Jacquot, D. Luneau, Angew. Chem. Int. Ed. 2006, 45, 4659.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xnt1Kqurs%3D&md5=351fae83180fdb778afecdecc65565d2CAS |
[10] X. Q. Zhao, P. Cui, B. Zhao, W. Shi, P. Cheng, Dalton Trans. 2011, 40, 805.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjslWgtw%3D%3D&md5=8ec87dcf3f2f1abcc0e35119c5fce29eCAS |
[11] V. Chandrasekhar, B. M. Pandian, R. Azhakar, J. J. Vittal, R. Clérac, Inorg. Chem. 2007, 46, 5140.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmtFSms7s%3D&md5=fcba1621aebf97351690036635b5dec1CAS |
[12] V. Chandrasekhar, B. M. Pandian, R. Azhakar, J. J. Vittal, R. Clérac, Inorg. Chem. 2009, 48, 1148.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjtVensA%3D%3D&md5=6b92ae4e2be26ea7e6a2e142b17060f5CAS |
[13] (a) R. Baggio, M. T. Garland, Y. Moreno, O. Péna, M. Perec, E. Spodine, J. Chem. Soc., Dalton Trans. 2000, 2061.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXktlCns7Y%3D&md5=55e3f90220ec4ad4b8416283ba7cc279CAS |
(b) Y. C. Liang, M. C. Hong, W. P. Su, R. Cao, W. J. Zhang, Inorg. Chem. 2001, 40, 4574.
| Crossref | GoogleScholarGoogle Scholar |
(c) J. P. Costes, G. Novitchi, S. Shova, F. Dahan, B. Donnadieu, J. P. Tuchagues, Inorg. Chem. 2004, 43, 7792.
| Crossref | GoogleScholarGoogle Scholar |
(d) S. C. Xiang, S. M. Hu, T. L. Sheng, J. S. Chen, X. T. Wu, Chem. – Eur. J. 2009, 15, 12496.
| Crossref | GoogleScholarGoogle Scholar |
(e) F. Luo, Y. X. Che, J. M. Zheng, Cryst. Growth Des. 2006, 6, 2432.
| Crossref | GoogleScholarGoogle Scholar |
(f) F. Luo, D. X. Hu, L. Xue, Y. X. Che, J. M. Zheng, Cryst. Growth Des. 2007, 7, 851.
| Crossref | GoogleScholarGoogle Scholar |
(g) F. Luo, Y. T. Yang, Y. X. Che, J. M. Zheng, CrystEngComm 2008, 10, 1613.
| Crossref | GoogleScholarGoogle Scholar |
[14] F. Luo, S. R. Batten, Y. X. Che, J. M. Zheng, Chem. – Eur. J. 2007, 13, 4948.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXms1Wrurs%3D&md5=28177af3edf0a63cb9b32fc239def31bCAS |
[15] (a) Y. M. Song, F. Luo, M. B. Luo, Z. W. Liao, G. M. Sun, X. Z. Tian, Y. Zhu, Z. J. Yuan, S. J. Liu, W. Y. Xu, X. F. Feng, Chem. Commun. 2012, 48, 1006.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVKgsw%3D%3D&md5=189837238e4256515f5618f1abf71b26CAS |
(b) F. Luo, Z. W. Liao, Y. M. Song, H. X. Huang, X. Z. Tian, G. M. Sun, Y. Zhu, Z. J. Yuan, M. B. Luo, S. J. Liu, W. Y. Xu, X. F. Feng, Dalton Trans. 2011, 40, 12651.
| Crossref | GoogleScholarGoogle Scholar |
(c) Y. Zhu, F. Luo, Y. M. Song, X. F. Feng, M. B. Luo, Z. W. Liao, G. M. Sun, X. Z. Tian, Z. J. Yuan, Cryst. Growth Des. 2012, 12, 2158.
| Crossref | GoogleScholarGoogle Scholar |
(d) Y. Zhu, F. Luo, Y. M. Song, H. X. Huang, G. M. Sun, X. Z. Tian, Z. J. Yuan, Z. W. Liao, M. B. Luo, S. J. Liu, W. Y. Xu, X. F. Feng, Dalton Trans. 2012, 41, 6749.
| Crossref | GoogleScholarGoogle Scholar |
(e) F. Luo, Y. M. Song, H. X. Huang, X. Z. Tian, G. M. Sun, Y. Zhu, X. F. Feng, Aust. J. Chem. 2012,
| Crossref | GoogleScholarGoogle Scholar |
[16] J. Bartolomé, G. Filoti, V. Kuncser, G. Schinteie, V. Meracre, C. E. Anson, A. K. Powell, D. Prodius, C. Turta, Phys. Rev. B 2009, 80, 014430.
| Crossref | GoogleScholarGoogle Scholar |
[17] (a) J. Souletie, P. Rabu, M. Drillon, Scaling Theory Applied to Low Dimensional Magnetic System, in Magnetism: Molecules to Materials (Eds J. S. Miller, M. Drillon) 2005, Vol. V, p. 347 (Wiley-VCH: Weinheim).
(b) J. Souletie, P. Rabu, M. Drillon, Phys. Rev. B 2005, 72, 214427.
(c) M. Drillon, P. Panissod, P. Rabu, J. Souletie, V. Ksenofontov, P. Gütlich, Phys. Rev. B 2002, 65, 104404.
| Crossref | GoogleScholarGoogle Scholar |