The Influence of Water and Metal Ions on the Transport Properties of Trihexyl(tetradecyl)phosphonium Chloride
Paul M. Bayley A D , Jan Novak B , Timothy Khoo A , Melanie M. Britton B , Patrick C. Howlett A , Douglas R. Macfarlane C and Maria Forsyth AA Institute for Frontier Materials, Deakin University, Geelong, Vic. 3217, Australia.
B Department of Chemistry, University of Birmingham, Birmingham B15 2TT, UK.
C School of Chemistry, Monash University, Wellington Road, Clayton, Vic. 3800, Australia.
D Corresponding author. Email: p.bayley@deakin.edu.au
Australian Journal of Chemistry 65(11) 1542-1547 https://doi.org/10.1071/CH12332
Submitted: 14 July 2012 Accepted: 30 September 2012 Published: 31 October 2012
Abstract
A recent study indicated that the water-saturated ionic liquid (IL) trihexyl(tetradecyl)phosphonium chloride ([P6,6,6,14][Cl]) provided a viable electrolyte for a Mg-air battery. However, there is limited literature on the properties of IL-water mixtures as battery electrolytes. The physical properties of [P6,6,6,14][Cl] were studied with the addition of both water and metal salts (MgCl2 and LiCl) using conductivity and self-diffusion coefficient measurements. The conductivity of the samples at low water concentrations is surprisingly enhanced by the addition of the metal salt, contrary to lithium IL electrolytes. It was also found that the conductivity of the IL was increased by an order of magnitude by saturation with water. NMR diffusion measurements were used to probe the behaviour of both the cation and the water in the mixtures. It was found that the addition of metal salts to the water-saturated [P6,6,6,14][Cl] did not affect the transport properties of the water or cation.
References
[1] F. Cheng, J. Chen, Chem. Soc. Rev. 2012, 41, 2172.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XivFWlsbw%3D&md5=b7ff3657a8ed2e5294debf867f46aafeCAS |
[2] M. J. Earle, J. M. S. S. Esperanca, M. A. Gilea, J. N. Canongia Lopes, L. P. N. Rebelo, J. W. Magee, K. R. Seddon, J. A. Widegren, Nature 2006, 439, 831.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhsVSkurk%3D&md5=2794b11b881f79e6e2236c48af9fbb31CAS |
[3] F. Endres, ChemPhysChem 2002, 3, 144.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhvVels74%3D&md5=4ee3e0b3b32c05ab46744a9f6087849fCAS |
[4] H. H. Ohno, Bull. Chem. Soc. Jpn. 2006, 79, 1665.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht12htb%2FN&md5=db8beb10aab4dac42d9b8436fd2fb994CAS |
[5] T. Kuboki, T. Okuyama, T. Ohsaki, N. Takami, J. Power Sources 2005, 146, 766.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVShtLjP&md5=0ca3ee02f619043a3aa0e570700ebe01CAS |
[6] K. Hayamizu, S. Tsuzuki, S. Seki, J. Phys. Chem. A 2008, 112, 12027.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlWqur7K&md5=39e8cd0f9298e06b27772402f3dee445CAS |
[7] P. M. Bayley, A. S. Best, D. R. MacFarlane, M. Forsyth, Phys. Chem. Chem. Phys. 2011, 13, 4632.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXit1yks78%3D&md5=454bfdb989a5cf3155cdb7095a8ce2a8CAS |
[8] P. M. Bayley, G. H. Lane, N. M. Rocher, B. R. Clare, A. S. Best, D. R. MacFarlane, M. Forsyth, Phys. Chem. Chem. Phys. 2009, 11, 7202.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpslemu7c%3D&md5=2e4af95d17b506366d25c0d4a28719daCAS |
[9] W. Li, Z. Zhang, B. Han, S. Hu, Y. Xie, G. Yang, J. Phys. Chem. B 2007, 111, 6452.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlsFemsLk%3D&md5=76a9998a48c4eccd6b56d08c764b4257CAS |
[10] D. R. MacFarlane, M. Forsyth, E. I. Izgorodina, A. P. Abbott, G. Annat, K. Fraser, Phys. Chem. Chem. Phys. 2009, 11, 4962.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnsl2hsbc%3D&md5=22fbd2e3974f9189495a31af165d8d5bCAS |
[11] T. Khoo, P. C. Howlett, M. Tsagouria, D. R. MacFarlane, M. Forsyth, Electrochim. Acta 2011, 58, 583.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVyltbbO&md5=fd2e5bf0fd8ce3d380d8572641be704aCAS |
[12] T. Khoo, A. Somers, A. J. Torriero, D. R. MacFarlane, P. C. Howlett, M. Forsyth, Electrochim. Acta 2012,
| Crossref | GoogleScholarGoogle Scholar |
[13] P. Wasserscheid, T. Welton, Ionic Liquids in Synthesis 2003 (Wiley-VCH: Weinheim).
[14] B. R. Clare, P. M. Bayley, A. S. Best, M. Forsyth, D. R. MacFarlane, Chem. Commun. 2008, 2689.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmvVCqt7s%3D&md5=c63dcee078bf68e1b2259641a8b38c14CAS |
[15] I. Goodchild, L. Collier, S. L. Millar, I. Proke, J. C. D. Lord, C. P. Butts, J. Bowers, J. R. P. Webster, R. K. Heenan, J. Colloid Interface Sci. 2007, 307, 455.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1GhtbY%3D&md5=7f717c988d6994f2d4d3498110249127CAS |
[16] J. G. Huddleston, A. E. Visser, W. M. Reichert, H. D. Willauer, G. A. Broker, R. D. Rogers, Green Chem. 2001, 3, 156.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmtVWhsr8%3D&md5=c92604dc3c24da803248d6c3c1cf5392CAS |
[17] K. R. Seddon, A. Stark, M. J. Torres, Pure Appl. Chem. 2000, 72, 2275.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXisVCgtb4%3D&md5=f789dfbf4561e4a699305a4e6d7cdaedCAS |
[18] T. Welton, Chem. Rev. 1999, 99, 2071.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXkt1artrw%3D&md5=162516de75da8d6812cfbe316e3ff814CAS |
[19] E. O. Stejskal, J. E. Tanner, J. Chem. Phys. 1965, 42, 288.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2MXisFOrtQ%3D%3D&md5=3fe3b80e2f8facb7b9ad0c8079e63367CAS |
[20] P. M. Bayley, A. S. Best, D. R. MacFarlane, M. Forsyth, Phys. Chem. Chem. Phys. 2011, 13, 4632.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXit1yks78%3D&md5=454bfdb989a5cf3155cdb7095a8ce2a8CAS |
[21] K. Hayamizu, Y. Aihara, H. Nakagawa, T. Nukuda, W. S. Price, J. Phys. Chem. B 2004, 108, 19527.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVSit7bK&md5=579c7e84d5c5c6ae959bd60288465838CAS |
[22] M. L. P. Le, F. Alloin, P. Strobel, J.-C. Lepretre, C. Perez del Valle, P. Judeinstein, J. Phys. Chem. B 2010, 114, 894.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhs1alu77N&md5=63689fd64223a0a0bd7d7dd1b16a06f0CAS |
[23] A. Menjoge, J. Dixon, J. F. Brennecke, E. J. Maginn, S. Vasenkov, J. Phys. Chem. B 2009, 113, 6353.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXktlygsL8%3D&md5=2155c8a6a4e5a170b11e5d04b5c30035CAS |
[24] C. G. Hanke, R. M. Lynden-Bell, J. Phys. Chem. B 2003, 107, 10873.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnt1Ogtbc%3D&md5=4ddd6a48777e8ccc2103bd17ff937f3aCAS |
[25] P. M. Bayley, G. H. Lane, N. M. Rocher, B. R. Clare, A. S. Best, D. R. MacFarlane, M. Forsyth, Phys. Chem. Chem. Phys. 2009, 11, 7202.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpslemu7c%3D&md5=2e4af95d17b506366d25c0d4a28719daCAS |
[26] D. Nama, P. G. A. Kumar, P. S. Pregosin, T. J. Geldbach, P. J. Dyson, Inorg. Chim. Acta 2006, 359, 1907.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xis1eltrk%3D&md5=295a8c99aac4926a14f7cd4a6a6503ddCAS |
[27] P. M. Bayley, G. H. Lane, L. J. Lyons, D. R. MacFarlane, M. Forsyth, J. Phys. Chem. C 2010, 114, 20569.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVKrt7%2FO&md5=a926ab06118b4bb8a23c6c015f1d16c7CAS |
[28] L. J. Hardwick, M. Holzapfel, A. Wokaun, P. Novak, J. Raman Spectrosc. 2007, 38, 110.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhs1Wqt7w%3D&md5=ee5504bf242d1482d389e48bf5ead519CAS |
[29] C. Austen Angell, Y. Ansari, Z. Zhao, Faraday Discuss. 2012, 154, 9.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFeis7zJ&md5=0287bfdbcf2b56592231d49ef20d9fecCAS |