Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

Ionic Liquids for Lignin Processing: Dissolution, Isolation, and Conversion

Md. Mokarrom Hossain A and Leigh Aldous A B
+ Author Affiliations
- Author Affiliations

A School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia.

B Corresponding author. Email: l.aldous@unsw.edu.au




Md. Mokarrom Hossain recently finished his M.Sc. in Chemistry at the University of Dhaka, Bangladesh (2010), and Kyungpook National University, Republic of Korea (2012). He now works as a Ph.D. student in the Aldous group at the School of Chemistry, University of New South Wales, researching lignin processing in ionic liquids.



Leigh Aldous obtained his Ph.D. from the School of Chemistry & Chemical Engineering, Queen’s University Belfast, UK (2007), before holding post-doctoral research fellow positions at the same institution and at the Physical & Theoretical Chemistry Laboratory, University of Oxford, UK. He was appointed as a lecturer at the School of Chemistry, University of New South Wales, in 2011. His research focusses upon ionic liquids, electrochemistry, and physical chemistry.

Australian Journal of Chemistry 65(11) 1465-1477 https://doi.org/10.1071/CH12324
Submitted: 8 July 2012  Accepted: 31 July 2012   Published: 17 September 2012

Abstract

We present a review on the multifunctional use of ionic liquids with respect to lignin processing. In a biorefinery context, lignocellulosics could be used to provide sustainable sources of fuels such as bioethanol, and feedstock molecules for the chemical industry such as phenols and other aromatics. However, separation of lignin from cellulose and hemicellulose is a vital step. Ionic liquids can dissolve extensive quantities of biomass, and even be designed to be multifunctional solvents. We highlight the use of ionic liquids in selectively or non-selectively dissolving lignin, the depolymerization reactions that have been attempted on lignin in ionic liquids, and the effect ionic liquids have been observed to have on such processes. Finally, we present some of the challenges and issues that must be addressed before the informed and large-scale application of ionic liquids can be realized for lignin processing.


References

[1]  R. W. Bentley, Energ. Policy 2002, 30, 189.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  R. A. Kerr, Science 1998, 281, 1129.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXls1Clt7c%3D&md5=e78c62a38a100c6c666d17bf051cb7c5CAS |

[3]  J. H. Clark, F. E. I. Deswarte, T. J. Farmer, Biofuel. Bioprod. Bior. 2009, 3, 72.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlGgtbY%3D&md5=b19b34688e6343d241ce3ed3bb7c0ef9CAS |

[4]  B. Brehmer, R. M. Boom, J. Sanders, Chem. Eng. Res. Des. 2009, 87, 1103.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1GjtrrK&md5=5f121742991d9061bf45f9e75e517e11CAS |

[5]  G. W. Crabtree, N. S. Lewis, Phys. Today 2007, 60, 37.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjvV2qsb0%3D&md5=e2e8ed2f4364017b90d07d04ff2b1eedCAS |

[6]  A. Stark, Energ. Environ. Sci. 2011, 4, 19.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXivF2ntbk%3D&md5=da020938193565cd2e738229f73cd411CAS |

[7]  Y. Q. Pu, N. Jiang, A. J. Ragauskas, J. Wood Chem. Technol. 2007, 27, 23.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXkvFCltLw%3D&md5=6e040faff7f5093285a65bb1e661c9e3CAS |

[8]  A. J. Ragauskas, C. K. Williams, B. H. Davison, G. Britovsek, J. Cairney, C. A. Eckert, W. J. Frederick, J. P. Hallett, D. J. Leak, C. L. Liotta, J. R. Mielenz, R. Murphy, R. Templer, T. Tschaplinski, Science 2006, 311, 484.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmvVylsw%3D%3D&md5=f732c7ffcd8d101dd01f17a9be88f9c8CAS |

[9]  J.-Y. Kim, E.-J. Shin, I.-Y. Eom, K. Won, Y. H. Kim, D. Choi, I.-G. Choi, J. W. Choi, Bioresour. Technol. 2011, 102, 9020.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtV2qtL7K&md5=10ecce6532aad5cbdb937cc5f9728a3fCAS |

[10]  S. S. Y. Tan, D. R. MacFarlane, Top. Curr. Chem. 2009, 290, 311.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXovVCrsLw%3D&md5=4920476ee6a053f612554a878d92d14aCAS |

[11]  J. O. Metzger, C. Bicke, O. Faix, W. Tuszynski, R. Angermann, M. Karas, K. Strupat, Angew. Chem. Int. Ed. 1992, 31, 762.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  B. J. Cox, S. Jia, Z. C. Zhang, J. G. Ekerdt, Polym. Degrad. Stabil. 2011, 96, 426.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXisFGksb0%3D&md5=250d8636dc519f0c56cdf4a8dbbefe8eCAS |

[13]  J. Zakzeski, P. C. A. Bruijnincx, A. L. Jongerius, B. M. Weckhuysen, Chem. Rev. 2010, 110, 3552.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjtVyjsrw%3D&md5=2240bfeb4ce1507d1c28d3d9a7aeef0aCAS |

[14]  J. B. Binder, M. J. Gray, J. F. White, Z. C. Zhang, J. E. Holladay, Biomass Bioenerg. 2009, 33, 1122.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXptFCgtLk%3D&md5=49ba485237ba6ba96647f415189d7cd7CAS |

[15]  P. Weerachanchai, S. S. J. Leong, M. W. Chang, C. B. Ching, J.-M. Lee, Bioresour. Technol. 2012, 111, 453.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XksFWltrs%3D&md5=184d4801bd46b74be4fd07c0462bc407CAS |

[16]  A. Brandt, J. P. Hallett, D. J. Leak, R. J. Murphy, T. Welton, Green Chem. 2010, 12, 672.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXkt1Grt7g%3D&md5=9ebbf4a2a60fff88126ea3c179efbbf2CAS |

[17]  S. H. Lee, T. V. Doherty, R. J. Linhardt, J. S. Dordick, Biotechnol. Bioeng. 2009, 102, 1368.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjtl2ks70%3D&md5=955bf86359c888922b8ea729fb8f5f29CAS |

[18]  X.-D. Hou, T. J. Smith, N. Li, M.-H. Zong, Biotechnol. Bioeng. 2012, 109, 2484.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmtVKmtb0%3D&md5=87d1d0faea910c2710c550f5ac45e0eaCAS |

[19]  D. Fu, G. Mazza, Y. Tamaki, J. Agric. Food Chem. 2010, 58, 2915.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhslSht7c%3D&md5=6dae51002990bcbf886de3345a8f8b78CAS |

[20]  K. M. DeAngelis, M. Allgaier, Y. Chavarria, J. L. Fortney, P. Hugenholtz, B. Simmons, K. Sublette, W. L. Silver, T. C. Hazen, PLoS ONE 2011, 6, e19306.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXls1KktLs%3D&md5=ee245454adbb0accc96bb382a344667cCAS |

[21]  C. Chapple, M. Ladisch, R. Meilan, Nat. Biotechnol. 2007, 25, 746.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnsFartbw%3D&md5=02d6d70d7c57f97ec0163f64b869cf7dCAS |

[22]  A. Casas, J. Palomar, M. V. Alonso, M. Oliet, S. Omar, F. Rodriguez, Ind. Crops Prod. 2012, 37, 155.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XisFWrsbg%3D&md5=96ccf8aae38ca912bdebafb59772c775CAS |

[23]  B. Li, J. Asikkala, I. Filpponen, D. S. Argyropoulos, Ind. Eng. Chem. Res. 2010, 49, 2477.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1Wnurc%3D&md5=1170324f57a241ecb1f1e56c4ea4985dCAS |

[24]  L. E. Barrosse-Antle, A. M. Bond, R. G. Compton, A. M. O’Mahony, E. I. Rogers, D. S. Silvester, Chem. Asian J. 2010, 5, 202.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVGqtrY%3D&md5=509ebacc25e104c30aa5ed7e5a3c9674CAS |

[25]  N. Sun, X. Jiang, M. L. Maxim, A. Metlen, R. D. Rogers, ChemSusChem 2011, 4, 65.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmtFWntQ%3D%3D&md5=1f8dd7d9a0352289e942b66be04d572fCAS |

[26]  S. S. Y. Tan, D. R. MacFarlane, J. Upfal, L. A. Edye, W. O. S. Doherty, A. F. Patti, J. M. Pringle, J. L. Scott, Green Chem. 2009, 11, 339.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXivVOltb8%3D&md5=b38806d1003f9b6f1c826d6c6eb11c5cCAS |

[27]  R. P. Swatloski, S. K. Spear, J. D. Holbrey, R. D. Rogers, J. Am. Chem. Soc. 2002, 124, 4974.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XivVOmt70%3D&md5=40b751be280e664b18989fc93a69f6b4CAS |

[28]  N. Sun, H. Rodriguez, M. Rahman, R. D. Rogers, Chem. Commun. 2011, 1405.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXot1Ciuw%3D%3D&md5=0cf2573e9023fb03c487baf507b5980dCAS |

[29]  D. A. Fort, R. C. Remsing, R. P. Swatloski, P. Moyna, G. Moyna, R. D. Rogers, Green Chem. 2007, 9, 63.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVehsg%3D%3D&md5=e852e4b213892fd6b0077de513adc6fcCAS |

[30]  N. Sun, M. Rahman, Y. Qin, M. L. Maxim, H. Rodriguez, R. D. Rogers, Green Chem. 2009, 11, 646.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlsl2itb4%3D&md5=40e58f1f141c13f762f1b7d853164e9cCAS |

[31]  L. Wei, K. Li, Y. Ma, X. Hou, Ind. Crops Prod. 2012, 37, 227.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XisFWrtrs%3D&md5=553e3799ed480e159da53e62105c5ebdCAS |

[32]  A. P. Dadi, S. Varanasi, C. A. Schall, Biotechnol. Bioeng. 2006, 95, 904.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtF2qsrfJ&md5=97a8cfdf73a04175fc41c169e5df1933CAS |

[33]  I. Kilpelainen, H. Xie, A. King, M. Granstrom, S. Heikkinen, D. S. Argyropoulos, J. Agric. Food Chem. 2007, 55, 9142.
         | Crossref | GoogleScholarGoogle Scholar |

[34]  A. Pinkert, K. N. Marsh, S. S. Pang, M. P. Staiger, Chem. Rev. 2009, 109, 6712.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFCjt7nJ&md5=0f993cddf483c7cdfe358d5540affb9dCAS |

[35]  S. D. Zhu, Y. X. Wu, Q. M. Chen, Z. N. Yu, C. W. Wang, S. W. Jin, Y. G. Ding, G. Wu, Green Chem. 2006, 8, 325.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XivFOlur4%3D&md5=ddc93776b585dce1c7b4a5435296fde6CAS |

[36]  D. C. Dibble, C. L. Li, L. Sun, A. George, A. R. L. Cheng, O. P. Cetinkol, P. Benke, B. M. Holmes, S. Singh, B. A. Simmons, Green Chem. 2011, 13, 3255.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVSitLrJ&md5=392d4c7826806f3f7ff35a8839e51a10CAS |

[37]  W. Lan, C. F. Liu, R. G. Sun, J. Agric. Food Chem. 2011, 59, 8691.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXptVOjs7w%3D&md5=5d6c70a9a8340cd76ae11e7aa1ff38e6CAS |

[38]  N. Muhammad, Z. Man, M. Bustam Khalil, Eur. J. Wood Wood Prod. 2012, 70, 125.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjslCrsw%3D%3D&md5=dfbc35a7ce9588e7d6ccbee782d624abCAS |

[39]  M. Mora-Pale, L. Meli, T. V. Doherty, R. J. Linhardt, J. S. Dordick, Biotechnol. Bioeng. 2011, 108, 1229.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXksFekt70%3D&md5=1cf30a82299b4ebb876e26c7f5a8729cCAS |

[40]  P. Mäki-Arvela, I. Anugwom, P. Virtanen, R. Sjoeholm, J. P. Mikkola, Ind. Crops Prod. 2010, 32, 175.
         | Crossref | GoogleScholarGoogle Scholar |

[41]  H. Wang, G. Gurau, R. D. Rogers, Chem. Soc. Rev. 2012, 41, 1519.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVajsrw%3D&md5=0d7b4b981a1c2dbba348a838a7377493CAS |

[42]  L. Moens, N. Khan, in Green Industrial Applications of Ionic Liquids (Eds R. D. Rogers, K. R. Seddon, S. V. Volkov) 2002, pp. 157–171 (Kluwer Academic: Dordrecht).

[43]  S. Singh, B. A. Simmons, K. P. Vogel, Biotechnol. Bioeng. 2009, 104, 68.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXptVGksrk%3D&md5=9f5895e38bff3f430d8734c6a4c54641CAS |

[44]  T. G. A. Youngs, C. Hardacre, J. D. Holbrey, J. Phys. Chem. B 2007, 111, 13765.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlSgurjM&md5=837330c04acac2644831b86091ce9ff8CAS |

[45]  T. G. A. Youngs, J. D. Holbrey, C. L. Mullan, S. E. Norman, M. C. Lagunas, C. D’Agostino, M. D. Mantle, L. F. Gladden, D. T. Bowron, C. Hardacre, Chem. Sci. 2011, 2, 1594.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXoslWksrY%3D&md5=6f5cc27ce940c22f5452beb17771c2dfCAS |

[46]  G. Cheng, P. Varanasi, C. L. Li, H. B. Liu, Y. B. Menichenko, B. A. Simmons, M. S. Kent, S. Singh, Biomacromolecules 2011, 12, 933.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXisVyks78%3D&md5=599459e9c0625bc8e6d6cdf9525aed1eCAS |

[47]  M. Balakshin, E. Capanema, H. Gracz, H. M. Chang, H. Jameel, Planta 2011, 233, 1097.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmsFGgt7c%3D&md5=93f1785f93baa46c5b1257c77f393f64CAS |

[48]  A. Pinkert, D. F. Goeke, K. N. Marsh, S. Pang, Green Chem. 2011, 13, 3124.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVSitL3K&md5=0cc366a08238a30e045131cd0f5250a1CAS |

[49]  F. Guo, Z. Fang, T.-J. Zhou, Bioresour. Technol. 2012, 112, 313.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XkvFOlurc%3D&md5=fc70c0d059dfff777b09ca78d7ddfa12CAS |

[50]  J. Zakzeski, A. L. Jongerius, B. M. Weckhuysen, Green Chem. 2010, 12, 1225.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXotlyrtbo%3D&md5=290d99dc2d50b120a6249df5f1d67585CAS |

[51]  Q. Xin, K. Pfeiffer, J. M. Prausnitz, D. S. Clark, H. W. Blanch, Biotechnol. Bioeng. 2012, 109, 346.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVyru7rJ&md5=8f2381d5147b0993b426b914cc34ca5aCAS |

[52]  A. George, K. Tran, T. J. Morgan, P. I. Benke, C. Berrueco, E. Lorente, B. C. Wu, J. D. Keasling, B. A. Simmons, B. M. Holmes, Green Chem. 2011, 13, 3375.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFantLjF&md5=d682f5002975e7b6ae5618b29f3d291bCAS |

[53]  A. Casas, M. V. Alonso, M. Oliet, E. Rojo, F. Rodriguez, J. Chem. Technol. Biot. 2012, 87, 472.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVOrsb4%3D&md5=8af7990205c0971e97a8e62e2f6de531CAS |

[54]  L. M. Kline, D. G. Hayes, A. R. Womac, N. Labbe, Bioresources 2010, 5, 1366.
         | 1:CAS:528:DC%2BC3cXpsVKnsr4%3D&md5=15a718b35dd1fce8e1ad189b0a30a425CAS |

[55]  S. Padmanabhan, E. Zaia, K. Wu, H. W. Blanch, D. S. Clark, A. T. Bell, J. M. Prausnitz, Sep. Sci. Technol. 2012, 47, 370.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVOisrs%3D&md5=948294e694de48ebb3de0d4a489f5db6CAS |

[56]  M. Zavrel, D. Bross, M. Funke, J. Buchs, A. C. Spiess, Bioresour. Technol. 2009, 100, 2580.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXit1aiu7c%3D&md5=54bcb9ade0ac0f06a9058a1e1ff145a0CAS |

[57]  J. D. Holbrey, W. M. Reichert, M. Nieuwenhuyzen, O. Sheppard, C. Hardacre, R. D. Rogers, Chem. Commun. 2003, 476.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhtVOns7Y%3D&md5=9b5b48d981ccaf941cf807bf0f510b47CAS |

[58]  H. Lateef, S. Grimes, P. Kewcharoenwong, B. Feinberg, J. Chem. Technol. Biot. 2009, 84, 1818.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlyqsLvJ&md5=dd84e27f7a85c6e6ac3336d6ee0306f6CAS |

[59]  S. Q. Han, J. L. Li, S. D. Zhu, R. Chen, Y. X. Wu, X. Y. Zhang, Z. N. Yu, Bioresources 2009, 4, 825.
         | 1:CAS:528:DC%2BD1MXotVyrtrs%3D&md5=bdfb90422cb456d3b4de42cf75142eecCAS |

[60]  C. Froschauer, M. Hummel, G. Laus, H. Schottenberger, H. Sixta, H. K. Weber, G. Zuckerstatter, Biomacromolecules 2012, 13, 1973.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XntFShur0%3D&md5=e20a24dde74a2a9c68169ff677a7d74eCAS |

[61]  O. A. El Seoud, A. Koschella, L. C. Fidale, S. Dorn, T. Heinze, Biomacromolecules 2007, 8, 2629.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXovFCltLo%3D&md5=f2b5afafd5c7b75fed1467342da59789CAS |

[62]  A. Brandt, M. J. Ray, T. Q. To, D. J. Leak, R. J. Murphy, T. Welton, Green Chem. 2011, 13, 2489.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtV2hsrzO&md5=48d4bf3b62d855e1675134d516b8974fCAS |

[63]  J. G. Lynam, R. M. Toufiq, V. R. Vasquez, C. J. Coronella, Bioresour. Technol. 2012, 114, 629.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xms1antL8%3D&md5=d86cdca426f8f51305d67e25c0bfb7e1CAS |

[64]  C. Sievers, M. B. Valenzuela-Olarte, T. Marzialetti, I. Musin, P. K. Agrawal, C. W. Jones, Ind. Eng. Chem. Res. 2009, 48, 1277.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFCiuw%3D%3D&md5=2cba7f6096da334fd40176e75ff01758CAS |

[65]  C. Li, Q. Wang, Z. K. Zhao, Green Chem. 2008, 10, 177.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVSis70%3D&md5=75552354815e58e770a500463ca1be6cCAS |

[66]  J. B. Binder, R. T. Raines, Proc. Natl. Acad. Sci. USA 2010, 107, 4516.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjs1emtb4%3D&md5=4c602646b7b1c2d41d976a73ec995037CAS |

[67]  B. Li, I. Filpponen, D. S. Argyropoulos, Ind. Eng. Chem. Res. 2010, 49, 3126.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXislKit7Y%3D&md5=86e71cc7aa9ed26c20e861a2130029a2CAS |

[68]  H. Yu, J. Hu, J. Fan, J. Chang, Ind. Eng. Chem. Res. 2012, 51, 3452.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XpvVOqtg%3D%3D&md5=7adfb4b1c7dced311518ccc712530076CAS |

[69]  W. Y. Li, N. Sun, B. Stoner, X. Y. Jiang, X. M. Lu, R. D. Rogers, Green Chem. 2011, 13, 2038.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpslGhtrc%3D&md5=8365d53e970e03f67ae41ef569f0e8fbCAS |

[70]  D. Diedericks, E. van Rensburg, M. D. Garcia-Aparicio, J. F. Gorgens, Biotechnol. Progr. 2012, 28, 76.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xis1Ogsrs%3D&md5=103cdea2e847380b6277cb706e63c8daCAS |

[71]  A. Brandt, J. K. Erickson, J. P. Hallett, R. J. Murphy, A. Potthast, M. J. Ray, T. Rosenau, M. Schrems, T. Welton, Green Chem. 2012, 14, 1079.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XksVKrsr0%3D&md5=68a25f139784a5756b50552aeb174b4fCAS |

[72]  Khudyakov  J. I.D’haeseleer  P.Borglin  S. E.DeAngelis  K. M.Woo  H.Lindquist  E. A.Hazen  T. C.Simmons  B. A.Thelen  M. P. Proc. Natl. Acad. Sci. USA 2012 . 10.1073/PNAS.1112750109

[73]  E. Reichert, R. Wintringer, D. A. Volmer, R. Hempelmann, Phys. Chem. Chem. Phys. 2012, 14, 5214.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xkt1CmtLw%3D&md5=35b2bafe1f7147de07c0c9b1e546e5abCAS |

[74]  S. Y. Jia, B. J. Cox, X. W. Guo, Z. C. Zhang, J. G. Ekerdt, Ind. Eng. Chem. Res. 2011, 50, 849.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFKmtrrE&md5=23a6abf33c4b2228ebeb57be6628d173CAS |

[75]  S. Kubo, K. Hashida, T. Yamada, S. Hishiyama, K. Magara, M. Kishino, H. Ohno, S. Hosoya, J. Wood Chem. Technol. 2008, 28, 84.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnsVSmsb0%3D&md5=9951d655576e0b136929c67584f457c0CAS |

[76]  J. Zakzeski, P. C. A. Bruijnincx, B. M. Weckhuysen, Green Chem. 2011, 13, 671.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXivVGisb8%3D&md5=1bdbdd2fe71bb97b47da2ad694048b7eCAS |

[77]  K. Stärk, N. Taccardi, A. Bosmann, P. Wasserscheid, ChemSusChem 2010, 3, 719.
         | Crossref | GoogleScholarGoogle Scholar |

[78]  C. Zhao, H. Z. Wang, N. Yan, C. X. Xiao, X. D. Mu, P. J. Dyson, Y. Kou, J. Catal. 2007, 250, 33.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXotl2qsb0%3D&md5=4408736cf0f4710bdcab5f7dc3a66c84CAS |

[79]  X. D. Mu, J. Q. Meng, Z. C. Li, Y. Kou, J. Am. Chem. Soc. 2005, 127, 9694.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXltVylsr0%3D&md5=176586466605616a33d13012693ce111CAS |

[80]  N. Yan, Y. A. Yuan, R. Dykeman, Y. A. Kou, P. J. Dyson, Angew. Chem. Int. Ed. 2010, 49, 5549.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXps1ChtLs%3D&md5=7b66098270a876e82b92fbc5bc64b953CAS |

[81]  A. C. Chen, E. I. Rogers, R. G. Compton, Electroanal. 2010, 22, 1037.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlvFWnsLk%3D&md5=c87000134049e3be5ae90a67f81dd0b2CAS |

[82]  A. M. O’Mahony, D. S. Silvester, L. Aldous, C. Hardacre, R. G. Compton, J. Chem. Eng. Data 2008, 53, 2884.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlCiu7vN&md5=e13b27b0adf2cd2afe2f84d7a84390d5CAS |

[83]  The California Energy Commission, Energy Almanac – Estimated 2012 Gasoline Price Breakdown & Margins Details 2012. Available at http://energyalmanac.ca.gov/gasoline/margins/index.php [Verified 7 July 2012]