Synthesis, Solid-state Structures, Solution Behaviour and Catalysis Studies of Nickel Complexes of Bis(benzimidazolin-2-ylidene)pyridine Pincer Ligands*
Karen D. M. MaGee A , Guy Travers A , Brian W. Skelton B , Massimilliano Massi A , Alan D. Payne A and David H. Brown A C DA Department of Chemistry, Curtin University, GPO Box U1987, Perth, WA 6845, Australia.
B Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.
C School of Biomedical, Biomolecular and Chemical Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.
D Corresponding author. Email: d.h.brown@curtin.edu.au
Australian Journal of Chemistry 65(7) 823-833 https://doi.org/10.1071/CH12044
Submitted: 25 January 2012 Accepted: 16 February 2012 Published: 24 April 2012
Abstract
N-Heterocyclic carbene–nickel complexes with five- and four-coordinate geometries [(CNC)NiBr2] and [(CNC)NiBr]X (X = PF6 or BPh4) have been prepared with the pincer ligands 2,6-bis(N-octylbenzimidazolin-2-ylidene)pyridine and 2,6-bis(N-butyl-5,6-dimethoxybenzimidazolin-2-ylidene)pyridine. The addition of the n-octyl substituent significantly extends the solubility of the complexes and has allowed UV-vis solution studies of the complexes in dichloromethane and methanol. The four- and five-coordinate species exist in equilibrium in solution and this equilibrium has been explored by UV-vis studies. The complexes have also been characterized by NMR studies, and single crystal X-ray diffraction studies have been performed on [(CNC)NiBr2] (where CNC = 2,6-bis(N-octylbenzimidazolin-2-ylidene)pyridine) and [(CNC)NiBr]BPh4 (where CNC = 2,6-bis(N-butyl-5,6-dimethoxybenzimidazolin-2-ylidene)pyridine).
References
[1] D. Pugh, A. A. Danopoulos, Coord. Chem. Rev. 2007, 251, 610.| Crossref | GoogleScholarGoogle Scholar |
[2] M. Poyatos, J. A. Mata, E. Peris, Chem. Rev. 2009, 109, 3677.
| Crossref | GoogleScholarGoogle Scholar |
[3] D. Yuan, H. Tang, L. Xiao, H. V. Huynh, Dalton Trans. 2011, 40, 8788.
| Crossref | GoogleScholarGoogle Scholar |
[4] C. Y. Wong, L. M. Lai, P. K. Pat, L. H. Chung, Organometallics 2010, 29, 2533.
| Crossref | GoogleScholarGoogle Scholar |
[5] C.-S. Lee, S. Sabiah, J.-C. Wang, W.-S. Hwang, I. J. B. Lin, Organometallics 2010, 29, 286.
| Crossref | GoogleScholarGoogle Scholar |
[6] F. Jean-Baptiste dit Dominique, H. Gornitzka, A. Sournia-Saquet, C. Hemmert, Dalton Trans. 2009, 340.
[7] A. Mrutu, K. I. Goldberg, R. A. Kemp, Inorg. Chim. Acta 2010, 364, 115.
| Crossref | GoogleScholarGoogle Scholar |
[8] A. Mrutu, D. A. Dickie, K. I. Goldberg, R. A. Kemp, Inorg. Chem. 2011, 50, 2729.
| Crossref | GoogleScholarGoogle Scholar |
[9] T. Tu, J. Malineni, K. H. Dötz, Adv. Synth. Catal. 2008, 350, 1791.
| Crossref | GoogleScholarGoogle Scholar |
[10] D. H. Brown, G. L. Nealon, P. V. Simpson, B. W. Skelton, Z. Wang, Organometallics 2009, 28, 1965.
| Crossref | GoogleScholarGoogle Scholar |
[11] T. Tu, X. Bao, W. Assenmacher, H. Peterlik, J. Daniels, K. H. Dötz, Chemistry 2009, 15, 1853.
| Crossref | GoogleScholarGoogle Scholar |
[12] T. Tu, X. Feng, Z. Wang, X. Liu, Dalton Trans. 2010, 10598.
| Crossref | GoogleScholarGoogle Scholar |
[13] D. H. Brown, B. W. Skelton, Dalton Trans. 2011, 8849.
| Crossref | GoogleScholarGoogle Scholar |
[14] T. Tu, H. Mao, C. Herbert, M. Z. Xu, K. H. Dötz, Chem. Commun. 2010, 7796.
| Crossref | GoogleScholarGoogle Scholar |
[15] K. Inamoto, J.-i. Kuroda, K. Hiroya, Y. Noda, M. Watanabe, T. Sakamoto, Organometallics 2006, 25, 3095.
| Crossref | GoogleScholarGoogle Scholar |
[16] K. Inamoto, J.-i. Kuroda, E. Kwon, K. Hiroya, T. Doi, J. Organomet. Chem. 2009, 694, 389.
| Crossref | GoogleScholarGoogle Scholar |
[17] D. Pugh, A. Boyle, A. A. Danopoulos, Dalton Trans. 2008, 1087.
| Crossref | GoogleScholarGoogle Scholar |
[18] M. V. Baker, D. H. Brown, P. V. Simpson, B. W. Skelton, A. H. White, Dalton Trans. 2009, 7294.
| Crossref | GoogleScholarGoogle Scholar |
[19] M. V. Baker, D. H. Brown, P. V. Simpson, B. W. Skelton, A. H. White, Eur. J. Inorg. Chem. 2009, 1977.
| Crossref | GoogleScholarGoogle Scholar |
[20] G. Zou, W. Huang, Y. Xiao, J. Tang, New J. Chem. 2006, 30, 803.
| Crossref | GoogleScholarGoogle Scholar |
[21] P. V. Simpson, B. W. Skelton, D. H. Brown, M. V. Baker, Eur. J. Inorg. Chem. 2011, 1937.
| Crossref | GoogleScholarGoogle Scholar |
[22] J. Nasielski, N. Hadei, G. Achonduh, E. A. B. Kantchev, C. J. O’Brien, A. Lough, M. G. Organ, Chemistry 2010, 16, 10844.
| Crossref | GoogleScholarGoogle Scholar |
[23] N. Hadei, E. A. B. Kantchev, C. J. O’Brien, M. G. Organ, Org. Lett. 2005, 7, 1991.
| Crossref | GoogleScholarGoogle Scholar |
[24] D. T. Rosa, R. A. Reynolds , S. M. Malinak, D. Coucouvanis, Inorg. Synth. 2002, 33, 112.
[25] J. A. Loch, M. Albrecht, E. Peris, J. Mata, J. W. Faller, R. H. Crabtree, Organometallics 2002, 21, 700.
| Crossref | GoogleScholarGoogle Scholar |
[26] K. Inamoto, J.-i. Kuroda, T. Sakamoto, K. Hiroya, Synthesis 2007, 2853.
| Crossref | GoogleScholarGoogle Scholar |
[27] H. V. Huynh, R. Jothibasu, Eur. J. Inorg. Chem. 2009, 1926.
| Crossref | GoogleScholarGoogle Scholar |
[28] G. M. Sheldrick, Acta Crystallogr. A 2008, 64, 112.
| Crossref | GoogleScholarGoogle Scholar |