Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT (Open Access)

On the Stability of Water Oxidation Catalysts: Challenges and Prospects

Alex Izgorodin A , Orawan Winther-Jensen A and Douglas R. MacFarlane A B
+ Author Affiliations
- Author Affiliations

A Australian Centre for Electromaterials Science, Monash University, Clayton, Vic. 3800, Australia.

B Corresponding author. Email: douglas.macfarlane@monash.edu




Dr. Alex Izgorodin completed his Master of Science degree in electronics and microelectronics at the Ivanovo State University of Chemistry and Technology in 2006. In 2010, Alex completed his Ph.D. in physical chemistry at Monash University entitled ‘Towards Hydrogen Production via Water Splitting’ under the supervision of Professor Douglas R. MacFarlane and is currently contributing his expertise to the area of semiconductors and water splitting.



Dr. Orawan Winther-Jensen is an Australian Postdoctoral Fellow (ARC) at Monash University. Her main research field covers materials and structures for water-splitting devices where breathable gas-diffusion electrodes and conjugated polymer electro-catalysts are the core areas of interest.



Professor Doug MacFarlane is an Australian Research Council Federation Fellow at Monash University and leads the Monash Ionic Liquids Group. He is also the program leader of the Energy Program in ACES. He was a Ph.D. graduate of Purdue University in 1982 and after post-doctoral work at Victoria University, Wellington, took up a faculty position at Monash. Professor MacFarlane was elected to the Australian Academy of Sciences in 2007 and to the Australian Academy of Technological Sciences and Engineering in 2009. His research interests include the chemistry and properties of ionic liquids and solids and their application in a wide range of technologies from electrochemical (batteries, fuel cells, solar cells, and corrosion prevention), to biotechnology (drug ionic liquids and protein stabilization) and biofuel processing. He is an Adjunct Professor of the University of Alabama, an International Fellow of the Queens University Ionic Liquid Laboratory, Belfast, and a Visiting Professor of the Chinese Academy of Science.

Australian Journal of Chemistry 65(6) 638-642 https://doi.org/10.1071/CH12024
Submitted: 18 January 2012  Accepted: 24 February 2012   Published: 16 April 2012

Abstract

Future requirements for water splitting technologies need highly efficient water oxidation catalysts that are sufficiently stable for operation over many years. Recent research has achieved significant progress in improving the electro-catalytic activities of these catalysts. However, there has not been a strong research focus on their long-term mechanical and chemical stability, yet this is critical for commercial application. In this paper we discuss some of the chemical and thermodynamic challenges confronting this goal, as well as some of the strategies that are available to overcome them. The challenge becomes even greater in the area of photo-active electromaterials; fortunately some of the same strategies may allow progress in this area also.


References

[1]  (a) M. R. Hoffmann, S. T. Martin, W. Y. Choi, D. W. Bahnemann, Chem. Rev. 1995, 95, 69.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXjtF2qur4%3D&md5=a2c095c6cd961275f5015f655349caeaCAS |
      (b) M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. X. Mi, E. A. Santori, N. S. Lewis, Chem. Rev. 2010, 110, 6446.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) H. Dau, C. Limberg, T. Reier, M. Risch, S. Roggan, P. Strasser, ChemCatChem 2010, 2, 724.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) R. M. N. Yerga, M. C. A. Galvan, F. del Valle, J. A. V. de la Mano, J. L. G. Fierro, ChemSusChem 2009, 2, 471.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) R. E. Blankenship, D. M. Tiede, J. Barber, G. W. Brudvig, G. Fleming, M. Ghirardi, M. R. Gunner, W. Junge, D. M. Kramer, A. Melis, T. A. Moore, C. C. Moser, D. G. Nocera, A. J. Nozik, D. R. Ort, W. W. Parson, R. C. Prince, R. T. Sayre, Science 2011, 332, 805.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) J. K. Hurst, Science 2010, 328, 315.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  S. Trasatti, Electrochim. Acta 1984, 29, 1503.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXmvFWqtQ%3D%3D&md5=7f7f65aabdcc13b3627d273bb80491b5CAS |

[3]  R. Kotz, S. Stucki, D. Scherson, D. M. Kolb, J. Electroanal. Chem. 1984, 172, 211.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  H. B. Beer, J. Electroanal. Chem. 1980, 127, 303C.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXltl2rsrc%3D&md5=5d35c83ba7af170c1c62e3e470cd08f1CAS |

[5]  S. Trasatti, Electrochim. Acta 2000, 45, 2377.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjvFymur0%3D&md5=4a7941c2f88cba79ce50a58fd59038e0CAS |

[6]  (a) F. Jiao, H. Frei, Energ. Environ. Sci. 2010, 3, 1018.
         | 1:CAS:528:DC%2BC3cXht1yrsbrK&md5=6a3bb3d58cd5800baca5773d2af8bf55CAS |
      (b) M. M. Najafpour, T. Ehrenberg, M. Wiechen, P. Kurz, Angew. Chem. Int. Ed. 2010, 49, 2233.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) D. M. Robinson, Y. B. Go, M. Greenblatt, G. C. Dismukes, J. Am. Chem. Soc. 2010, 132, 11467.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  (a) A. J. Esswein, Y. Surendranath, S. Y. Reece, D. G. Nocera, Energ. Environ. Sci. 2011, 4, 499.
         | 1:CAS:528:DC%2BC3MXivF2msL0%3D&md5=0c6e8ce604f0c9b93b3bc2d2236b01e0CAS |
      (b) M. W. Kanan, D. G. Nocera, Science 2008, 321, 1072.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) Q. S. Yin, J. M. Tan, C. Besson, Y. V. Geletii, D. G. Musaev, A. E. Kuznetsov, Z. Luo, K. I. Hardcastle, C. L. Hill, Science 2010, 328, 342.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) O. Metin, E. Kocak, S. Ozkar, React. Kinet., Mech. Catal. 2011, 103, 325.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  G. L. Elizarova, G. M. Zhidomirov, V. N. Parmon, Catal. Today 2000, 58, 71.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXisFyqt7k%3D&md5=5740faa55435e1b99b1ef741b07d70c3CAS |

[9]  J. G. McAlpin, Y. Surendranath, M. Dinca, T. A. Stich, S. A. Stoian, W. H. Casey, D. G. Nocera, R. D. Britt, J. Am. Chem. Soc. 2010, 132, 6882.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlsVeju70%3D&md5=e0d5c4c45a7e130e756a2f625f5c667fCAS |

[10]  D. C. I. Yao, D. C. Brune, D. Vavilin, W. F. J. Vermaas, J. Biol. Chem. 2012, 287, 682.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XotVGl&md5=058e8748971365d6d386b830771455c4CAS |

[11]  R. K. Hocking, R. Brimblecombe, L. Y. Chang, A. Singh, M. H. Cheah, C. Glover, W. H. Casey, L. Spiccia, Nat. Chem. 2011, 3, 461.
         | 1:CAS:528:DC%2BC3MXmtV2htL0%3D&md5=e1a1da8eed8e7449a5936fba7038db72CAS |

[12]  M. Badawi, J. F. Paul, S. Cristol, E. Payen, Y. Romero, F. Richard, S. Brunet, D. Lambert, X. Portier, A. Popov, E. Kondratieva, J. M. Goupil, J. El Fallah, J. P. Gilson, L. Mariey, A. Travert, F. Mauge, J. Catal. 2011, 282, 155.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVSns73O&md5=ad4c2bf67c999551aeb1a3cbe8b07b64CAS |

[13]  (a) F. E. Osterloh, Chem. Mater. 2008, 20, 35.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVWqsL3E&md5=9ea2398a70b48b0126639f609bbf7158CAS |
      (b) S. Ikeda, T. Nakamura, S. M. Lee, T. Yagi, T. Harada, T. Minegishi, M. Matsumura, ChemSusChem 2011, 4, 262.
      (c) I. Tsuji, H. Kato, A. Kudo, Angew. Chem. Int. Ed. 2005, 44, 3565.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  A. Kudo, Y. Miseki, Chem. Soc. Rev. 2009, 38, 253.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFWjtL3P&md5=9be15ab9c4385e4c91950d64e164b96eCAS |

[15]  (a) K. Kalyanasundaram, E. Borgarello, D. Duonghong, M. Gratzel, Angew. Chem. Int. Ed. 1981, 20, 987.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) M. M. T. Khan, R. C. Bhardwaj, C. M. Jadhav, J. Chem. Soc., Chem. Commun. 1985, 1690.

[16]  K. Maeda, K. Teramura, K. Domen, J. Catal. 2008, 254, 198.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXisVensrk%3D&md5=1d6974dcbaa79739bec82501f54cfde2CAS |

[17]  S. Licht, B. Wang, S. Mukerji, T. Soga, M. Umeno, H. Tributsch, Int. J. Hydrogen Energy 2001, 26, 653.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXkvVegsLY%3D&md5=1dcbaf7002e48f980b404e04ff100fb9CAS |

[18]  (a) K. Maeda, K. Teramura, D. L. Lu, T. Takata, N. Saito, Y. Inoue, K. Domen, Nature 2006, 440, 295.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XitlKgtbc%3D&md5=7cd087a56a8b9223ed860a9e1384d27eCAS |
      (b) Y. D. Hou, B. L. Abrams, P. C. K. Vesborg, M. E. Bjorketun, K. Herbst, L. Bech, A. M. Setti, C. D. Damsgaard, T. Pedersen, O. Hansen, J. Rossmeisl, S. Dahl, J. K. Norskov, I. Chorkendorff, Nat. Mater. 2011, 10, 434.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  O. Khaselev, J. A. Turner, Science 1998, 280, 425.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXivVeltro%3D&md5=27e2d14aa02bba8bd74f436628607869CAS |

[20]  O. Khaselev, A. Bansal, J. A. Turner, Int. J. Hydrogen Energy 2001, 26, 127.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXosFels74%3D&md5=4d1ae912705e484f600dd4709c909eafCAS |

[21]  S. Y. Reece, J. A. Hamel, K. Sung, T. D. Jarvi, A. J. Esswein, J. J. H. Pijpers, D. G. Nocera, Science 2011, 334, 645.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlyqu7vF&md5=e0298161b92e218b9b45c56538dc6eb5CAS |

[22]  K. Sivula, F. Le Formal, M. Gratzel, ChemSusChem 2011, 4, 432.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXks1WktLY%3D&md5=2d427f9baccfe01e0c406edebe721136CAS |

[23]  C. X. Kronawitter, L. Vayssieres, S. H. Shen, L. J. Guo, D. A. Wheeler, J. Z. Zhang, B. R. Antoun, S. S. Mao, Energ. Environ. Sci. 2011, 4, 3889.
         | 1:CAS:528:DC%2BC3MXhsVKitbvK&md5=d55f23c91e04b5cef4104d7f19d02e64CAS |

[24]  Z. G. Yi, J. H. Ye, N. Kikugawa, T. Kako, S. X. Ouyang, H. Stuart-Williams, H. Yang, J. Y. Cao, W. J. Luo, Z. S. Li, Y. Liu, R. L. Withers, Nat. Mater. 2010, 9, 559.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnvVOktrc%3D&md5=63796058a8604ba017792d8060edc2efCAS |

[25]  K. Sivula, F. Le Formal, M. Gratzel, ChemSusChem 2011, 4, 432.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXks1WktLY%3D&md5=2d427f9baccfe01e0c406edebe721136CAS |

[26]  A. J. Nozik, Annu. Rev. Phys. Chem. 1978, 29, 189.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXht1Cnurc%3D&md5=f4909c5e84352ede7628af521bf7fc2dCAS |

[27]  J. B. Gerken, J. G. McAlpin, J. Y. C. Chen, M. L. Rigsby, W. H. Casey, R. D. Britt, S. S. Stahl, J. Am. Chem. Soc. 2011, 133, 14431.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVGjtbnN&md5=9618355b89b666e65c02c13ff3f5ba48CAS |

[28]  R. Kotz, S. Stucki, D. Scherson, D. M. Kolb, J. Electroanal. Chem. 1984, 172, 211.
         | Crossref | GoogleScholarGoogle Scholar |

[29]  B. Beverskog, I. Puigdomenech, Corros. Sci. 1997, 39, 969.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjtVCktr8%3D&md5=23fe3d20666004fa7948c5c065950fafCAS |

[30]  B. S. Yeo, A. T. Bell, J. Am. Chem. Soc. 2011, 133, 5587.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjsVGjur8%3D&md5=7ff3d9cd48960667239b185426b940a3CAS |

[31]  A. C. C. Tseung, S. Jasem, Electrochim. Acta 1977, 22, 31.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2sXhs1altrg%3D&md5=1cfe03fb6c9cb67c7fcaa6d46d519888CAS |

[32]  D. A. Lutterman, Y. Surendranath, D. G. Nocera, J. Am. Chem. Soc. 2009, 131, 3838.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXisVKrt7Y%3D&md5=367b335a4c2d892733ee6093f9476d76CAS |

[33]  A. Izgorodin, B. Winther-Jensen, D. R. MacFarlane, Catalysts and Methods of Use. PCT patent application 2012.