Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Low-cost Hollow Silica Supports for Environmental Pollution: High Removal Capacity and Low Desorption Rate of Neutral Red

Weiwei Wu A , Long Fang A , Shunsheng Cao A B and Zhiyuan Zhao A
+ Author Affiliations
- Author Affiliations

A School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, China.

B Corresponding author. Email: sscaochem@hotmail.com

Australian Journal of Chemistry 65(4) 327-332 https://doi.org/10.1071/CH11475
Submitted: 13 December 2011  Accepted: 27 January 2012   Published: 20 March 2012

Abstract

Silica-based porous materials are popular adsorbents and have achieved marked success. However, one of the main challenges is surface functionalization for obtaining better removal performances. Therefore, in this paper we developed a hollow silica adsorbent with a well-defined morphology via a sodium silicate route. Compared with the conventional silica-based porous adsorbents prepared by the modified Stöber method, the synthesized hollow silica support exhibits many advantages such as low-cost silica source, and using only industrial commodities as starting materials and water as solvent. Excitedly, the resulting matrix can be used as a powerful separation tool to deal with environmental pollution because it is easy to separate from wastewater simply by centrifugation without any modification. The experimental results of absorption and separation on the neutral red indicate that low-cost hollow silica supports can evidently increase dye loading and decrease the rate of dye desorbed in comparison to conventional hollow silica adsorbents obtained via the Stöber method.

Additional keywords : adsorbent, sodium silicate.


References

[1]  S. Qu, F. Huang, S. Yu, G. Chen, J. Kong, J. Hazard. Mater. 2008, 160, 643.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlWht7jJ&md5=83d90f10635866f05244192ff6bde745CAS |

[2]  R. Gong, M. Li, C. Yang, Y. Sun, J. Chen, J. Hazard. Mater. 2005, 121, 247.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXktVahtrc%3D&md5=261e252d354471185f520da4ecd39114CAS |

[3]  J. Gong, B. Wang, G. Zeng, C. Yang, C. Niu, Q. Niu, W. Zhou, Y. Liang, J. Hazard. Mater. 2009, 164, 1517.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjsVCksrw%3D&md5=51a011584f322f1fab66f02a50e20bbaCAS |

[4]  Q. Zhou, W. Gong, C. Xie, D. Yang, X. Ling, X. Yuan, S. Chen, X. Liu, J. Hazard. Mater. 2011, 185, 502.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVCmur3L&md5=ab156c0af23dec3d3b1b23c38d6d9a4fCAS |

[5]  S. Cao, Z. Zhao, X. Jin, W. Sheng, S. Li, Y. Ge, M. Dong, W. Wu, L. Fang, J. Mater. Chem. 2011, 21, 19124.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFahsr7I&md5=ef6fc0a63ccee96e2e80159156c014feCAS |

[6]  S. Seshadri, P. L. Bishop, A. M. Agha, Waste Manag. 1994, 14, 127.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXmtFajsLc%3D&md5=6732bab51632fd7b379d91a8b2e25cf8CAS |

[7]  K. R. Ramakrishna, T. Viraraghavan, Water Sci. Technol. 1997, 36, 189.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXnvFaqur8%3D&md5=899469714122243761d0ffefe113f751CAS |

[8]  D. Yue, Y. Jing, J. Ma, C. Xia, X. Yin, Y. Jia, Desalination 2011, 267, 9.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFyjur%2FI&md5=8bcfc2b8af9e6ef816150e49b309c8deCAS |

[9]  G. J. Copello, A. M. Mebert, M. Raineri, M. P. Pesenti, L. E. Diaz, J. Hazard. Mater. 2011, 186, 932.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFaqtb8%3D&md5=92d4b0398b9a8773860812c681e24617CAS |

[10]  K. C. Chen, J. Y. Wu, C. C. Huang, Y. M. Liang, S. C. J. Hwang, J. Biotechnol. 2003, 101, 241.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhs1KmtL0%3D&md5=6792cfe9f7e98375c3092215b63523bdCAS |

[11]  S. B. Wang, Z. H. Zhu, A. Coomes, F. Haghseresht, G. Q. Lu, J. Colloid Interface Sci. 2005, 284, 440.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXisVWks70%3D&md5=8b4f0b9942cae26d0ab966168ea7a5ceCAS |

[12]  M. Iram, C. Guo, Y. Guan, A. Ishfaq, H. Liu, J. Hazard. Mater. 2010, 181, 1039.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXosF2gsrk%3D&md5=fec7f13b6e481f7ad6da70f3a96819b4CAS |

[13]  M. Kornaros, G. Lyberatos, J. Hazard. Mater. 2006, 136, 95.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XlsFGitrc%3D&md5=7466cfec5afeb8794254650bac528503CAS |

[14]  E. Guibal, J. Roussy, React. Funct. Polym. 2007, 67, 33.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlGqtrvF&md5=1e44be2dc03e137c340cb615345ab6e3CAS |

[15]  W. Zhao, Z. Wu, D. Wang, J. Hazard. Mater. 2006, 137, 1859.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVWrt7%2FP&md5=eff03cb344f69706c6ff0f65ad5c1c88CAS |

[16]  G. Crini, Prog. Polym. Sci. 2005, 30, 38.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlOht7w%3D&md5=8a9c7bd5e3b93dd7c4fd5e8305824ab4CAS |

[17]  G. Crini, Bioresour. Technol. 2006, 97, 1061.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XivVOjur4%3D&md5=eca4a58bd580a3882989380bdfb9bc6eCAS |

[18]  J. Ma, Y. Z. Jia, J. H. Sun, Y. Yao, X. H. Wang, J. Hazard. Mater. 2010, 175, 965.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFOqsLjI&md5=e2edad1068464fa0b954b559956c5ce6CAS |

[19]  F. C. Wu, R. L. Tseng, R. S. Juang, J. Colloid Interface Sci. 2005, 283, 49.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVaru7c%3D&md5=78670afc5a2a354d37e0c67cd8580707CAS |

[20]  R. Guravjyoti, A. Venkateswara, D. Y. Nadargi, H. H. Park, J. Mater. Sci. 2010, 45, 503.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  Z. Guo, F. Chen, Y. Deng, Q. H. Wan, L. Chen, Chem. J. Chin. Univ 2009, 30, 2017.
         | 1:CAS:528:DC%2BD1MXhsV2mu7fJ&md5=31db7c6db5d0b54820613a9f4f38d6a4CAS |

[22]  A. V. Rao, N. D. Hegde, H Hirashima, J. Colloid Interface Sci. 2007, 305, 124.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  V. Manu, H. M. Mody, H. C. Bajaj, R. Jasra, Ind. Eng. Chem. Res. 2009, 48, 8954.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFCqur3P&md5=28ee3fbbbfff3c7a1826207a0e4e5037CAS |

[24]  A. R. Cestari, E. F. S. Vieira, A. A. Pinto, E. C. N. Lopes, J. Colloid Interface Sci. 2005, 292, 363.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtF2qsLvI&md5=f9d33a095348731e848671bbbabf0688CAS |

[25]  D. Pérez-Quintanilla, I. D. Hierro, M. Fajardo, I. Sierra, J. Mater. Chem. 2006, 16, 1757.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  X. Feng, G. E. Fryxell, L.-Q. Wang, A. Y. Kim, J. Liu, K. M. Kemner, Science 1997, 276, 923.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjt1Wktb0%3D&md5=07a3eaeea44364f71f41996c3f71ff31CAS |

[27]  M. Feyen, C. Wwidenthaler, F. Schuth, A. H. Lu, J. Am. Chem. Soc. 2010, 132, 6791.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXltFChsbg%3D&md5=77efabe560076814262c52068e2a4532CAS |

[28]  L. Li, J. Ding, J. M. Xue, Chem. Mater. 2009, 21, 3629.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXos12mu7o%3D&md5=7856d9df848ef07ae19824037a0192fcCAS |

[29]  M. Ziolek, C. Martin, M. T. Navarro, H. Garcia, A. Douhal, J. Phys. Chem. C 2011, 115, 8858.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXks1GksLg%3D&md5=e1de284208eff4eb1a55a86cda94f303CAS |

[30]  C. Y. Jung, J. S. Kim, T. S. Chang, S. T. Kim, H. J. Lim, S. M. Koo, Langmuir 2010, 26, 5456.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjtlajsr8%3D&md5=6c71cbb14b7bfbd38eeab771d91aa76aCAS |

[31]  K. Hossain, A. Sayari, Micropor. Mesopor. Mater. 2008, 114, 387.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXns1ahu7g%3D&md5=c5027aaadb16491b35f8c57c32a2042dCAS |

[32]  Y. Wang, G. Wang, H. Wang, W. Cai, L. Zhang, Chem. Commun. (Camb.) 2008, 6555.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVKntbzJ&md5=5b28a4ec5fd7b6ded1fecad2776e173bCAS |

[33]  K. Kosuge, N. Kikukawa, M. Takemori, Chem. Mater. 2004, 16, 4181.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnsVOnsbs%3D&md5=54114c4d2735f3d29df4ec683d230047CAS |

[34]  H. Elimelech, D. Avnir, Chem. Mater. 2008, 20, 2224.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXislemsLg%3D&md5=f322de0cb15e2b7b8fd480430871f4cbCAS |

[35]  L. Sierra, J. L. Guth, Micropor. Mesopor. Mater. 1999, 27, 243.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXit1Ogs7s%3D&md5=ec6ca199d67ba23bf02d043672e08c16CAS |

[36]  C. Boissière, A. Larbot, E. Prouzet, Chem. Mater. 2000, 12, 1937.
         | Crossref | GoogleScholarGoogle Scholar |

[37]  K. Kosuge, T. Sato, N. Kikukawa, M. Takemori, Chem. Mater. 2004, 16, 899.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXps1egug%3D%3D&md5=ed4b41cbe6ac930b0a7a8eb840eb32e3CAS |

[38]  L. Zhang, H. Chen, J. Sun, J. Shen, Chem. Mater. 2007, 19, 948.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmtFSnsQ%3D%3D&md5=1fc4cf9b706e7e8080d3b63a7dd70fa3CAS |

[39]  W. Wu, X. Yuan, S. Cao, Y. Ge, S. Li, Z. Zhao, L. Fang, Aust. J. Chem. 2011, 64, 1541.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsF2rtLvM&md5=5cf68828ebb4f42a9c957f40494e260dCAS |

[40]  W. Wu, S. Cao, X. Yuan, Z. Zhao, L. Fang, J. Porous. Mater. 2012, 19,

[41]  P. Luo, Y. Zhao, B. Zhang, J. Liu, Y. Yang, J. Liu, Water Res. 2010, 44, 1489.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXitFyktLo%3D&md5=51955486ca80785362cab9aa3a743fa0CAS |

[42]  H. Isobe, S. Utsumi, K. Yamamoto, H. Kanoh, K. Kaneko, Langmuir 2005, 21, 8042.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmsVaiu7k%3D&md5=508e4cbacf721e1954d2ed2548851e92CAS |

[43]  M. Tsai, P. Huang, C. Yang, J. Nanopart. Res. 2006, 8, 943.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1elt7rO&md5=6796ff38f4cd861e27d1f19ee51f8602CAS |

[44]  O. Weichold, B. Tigges, M. Bertmer, M. Moller, J. Colloid Interface Sci. 2008, 324, 105.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnsFagu7Y%3D&md5=79d2aa34880863eb886b1f51509af139CAS |

[45]  Q. X. Zhou, M. Wang, J. Soils Sediments 2010, 10, 1324.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFOnt7rF&md5=67e041d06b82f89ad8f4b99afe39446eCAS |