Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

Features of Thiolated Ligands Promoting Resistance to Ligand Exchange in Self-Assembled Monolayers on Gold Nanoparticles

Xinyue Chen A , Wafaa W. Qoutah A , Paul Free B , Jonathan Hobley B , David G. Fernig A and David Paramelle B C
+ Author Affiliations
- Author Affiliations

A Department of Structural and Chemical Biology, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK.

B Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 3 Research Link, Singapore 117602.

C Corresponding author. Email: paramelled@imre.a-star.edu.sg

Australian Journal of Chemistry 65(3) 266-274 https://doi.org/10.1071/CH11432
Submitted: 10 November 2011  Accepted: 2 December 2011   Published: 20 February 2012

Abstract

An important feature necessary for biological stability of gold nanoparticles is resistance to ligand exchange. Here, we design and synthesize self-assembled monolayers of mixtures of small ligands on gold nanoparticles promoting high resistance to ligand exchange. We use as ligands short thiolated peptidols, e.g. H-CVVVT-ol, and ethylene glycol terminated alkane thiols (HS-C11-EG4). We present a straightforward method to evaluate the relative stability of each ligand shell against ligand exchange with small thiolated molecules. The results show that a ligand with a ‘thin’ stem, such as HS-C11-EG4, is an important feature to build a highly packed self-assembled monolayer and provide high resistance to ligand exchange. The greatest resistance to ligand exchange was found for the mixed ligand shells of the pentapeptidols H-CAVLT-ol or H-CAVYT-ol and the ligand HS-C11-EG4 at 30:70 (mole/mole). Mixtures of ligands of very different diameters, such as the peptidol H-CFFFY-ol and the ligand HS-C11-EG4, provide only a slightly lower stability against ligand exchange. These ligand shells are thus likely to be suitable for long-term use in biological environments. The method developed here provides a rapid screening tool to identify nanoparticles likely to be suitable for use in biological and biomedical applications.


References

[1]  S. Schultz, D. R. Smith, J. J. Mock, D. A. Schultz, Proc. Natl. Acad. Sci. USA 2000, 97, 996.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXpvFehtg%3D%3D&md5=4448d09b6af958cb9c0d9bb9b0c10b8bCAS |

[2]  K. L. Kelly, E. Coronado, L. L. Zhao, G. C. Schatz, J. Phys. Chem. B 2003, 107, 668.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xps1Ghur0%3D&md5=1940dd9b51c375fe9d1c130676713a9fCAS |

[3]  R. C. Doty, D. G. Fernig, R. Lévy, Cell. Mol. Life Sci. 2004, 61, 1843.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnsVWgt7k%3D&md5=e1e1e8c39bba5f38fb75e46b407f0953CAS |

[4]  S. Bozhevolnyi, F. García-Vidal, N. J. Phys. 2008, 10, 5001.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  W. P. McConnell, J. P. Novak, L. C. Brousseau, R. R. Fuierer, R. C. Tenent, D. L. Feldheim, J. Phys. Chem. B 2000, 104, 8925.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlvFOrt7s%3D&md5=171ce1a22a33ed6f19ff1fc1d6c68e8bCAS |

[6]  B. Duncan, C. Kim, V. M. Rotello, J. Control. Release 2010, 148, 122.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVCmsb%2FL&md5=ce9202a02dc0719562a5ba0811f7a1a2CAS |

[7]  J. F. Hainfeld, D. N. Slatkin, T. M. Focella, H. M. Smilowitz, B.J.R. 2006, 79, 248.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xjt12ntb0%3D&md5=ff830a4a624849a89cc80c43b2146f94CAS |

[8]  S. Berciaud, L. Cognet, G. A. Blab, B. Lounis, Phys. Rev. Lett. 2004, 93, 257402.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  D. Boyer, P. Tamarat, A. Maali, B. Lounis, M. Orrit, Science 2002, 297, 1160.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmsVOhsL4%3D&md5=af07d0fe07fc9c6de3677ef7573c96aaCAS |

[10]  D. Lasne, G. A. Blab, S. Berciaud, M. Heine, L. Groc, D. Choquet, L. Cognet, B. Lounis, Biophys. J. 2006, 91, 4598.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlWgurfF&md5=1c46abb66b0d1ba955d592d4ac21945fCAS |

[11]  R. Wilson, ChemComm 2003, 108.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXit1altA%3D%3D&md5=4e6f535f63c76a953cc3c25020293324CAS |

[12]  M. Bartz, J. Kuther, G. Nelles, N. Weber, R. Seshadri, W. Tremel, J. Mater. Chem. 1999, 9, 1121.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXisFGju7o%3D&md5=02bfb1211c34098a748056bd3363d207CAS |

[13]  R. Lévy, N. T. K. Thanh, R. C. Doty, I. Hussain, R. J. Nichols, D. J. Schiffrin, M. Brust, D. G. Fernig, J. Am. Chem. Soc. 2004, 126, 10076.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  P. Pengo, S. Polizzi, M. Battagliarin, L. Pasquato, P. Scrimin, J. Mater. Chem. 2003, 13, 2471.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnsVKrtr8%3D&md5=b125c3a81c93fb75568c29e580f6ac64CAS |

[15]  L. Strong, G. M. Whitesides, Langmuir 1988, 4, 546.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXitFSqs74%3D&md5=5887242f2613354f03cd2e29d3bd6b54CAS |

[16]  A. C. Templeton, M. P. Wuelfing, R. W. Murray, Acc. Chem. Res. 2000, 33, 27.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXnsFOnsro%3D&md5=ca49bfd2c2371887a696268ececf09caCAS |

[17]  R. Lévy, Z. X. Wang, L. Duchesne, R. C. Doty, A. I. Cooper, M. Brust, D. G. Fernig, ChemBioChem 2006, 7, 592.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  C. P. Shaw, D. G. Fernig, R. Lévy, J. Mater. Chem. 2011, 21, 12181.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpvFCqsro%3D&md5=be67a7852fe884a29dc32c1fd2071d5cCAS |

[19]  L. Duchesne, D. Gentili, M. Comes-Franchini, D. G. Fernig, Langmuir 2008, 24, 13572.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlCqtbjK&md5=c8cb14552b77f1cadac5dd21370718faCAS |

[20]  M. C. Daniel, D. Astruc, Chem. Rev. 2004, 104, 293.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpvFGlur0%3D&md5=26695a487a434683ad39bd76ecfb49a0CAS |

[21]  K. J. Jeong, K. Butterfield, A. Panitch, Langmuir 2008, 24, 8794.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXoslKmuro%3D&md5=5b658d0e5a6884c017edfb92e0f902aaCAS |

[22]  Z. X. Wang, A. G. Kanaras, A. D. Bates, R. Cosstick, M. Brust, J. Mater. Chem. 2004, 14, 578.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtlWmt74%3D&md5=034cd281930750ffad12d591f4fb63deCAS |

[23]  J. M. Abad, S. F. L. Mertens, M. Pita, V. M. Fernandez, D. J. Schiffrin, J. Am. Chem. Soc. 2005, 127, 5689.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXisVGlurY%3D&md5=ff7d7bb205b898e4d859fb10b8b29fb4CAS |