Synthesis and Structures of Halo-Substituted Aroylhydrazones with Antimicrobial Activity
Mei Zhang A , Dong-Mei Xian A , Hai-Hua Li A , Ji-Cai Zhang A and Zhong-Lu You A BA Department of Chemistry and Chemical Engineering, Liaoning Normal University, 116029 Dalian, P. R. China.
B Corresponding author. Email: youzhonglu@yahoo.com.cn
Australian Journal of Chemistry 65(4) 343-350 https://doi.org/10.1071/CH11424
Submitted: 3 November 2011 Accepted: 1 February 2012 Published: 13 March 2012
Abstract
A series of new halo-substituted aroylhydrazones have been prepared and structurally characterized by elemental analysis, 1H NMR, 13C NMR, and IR spectra, and single crystal X-ray diffraction. The compounds were evaluated for their antibacterial (Bacillus subtilis, Staphylococcus aureus, Escherichia coli, and Pseudomonas fluorescence) and antifungal (Candida albicans and Aspergillus niger) activities by the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) method. Among the tested compounds, N′-(2-chloro-5-nitrobenzylidene)-2-fluorobenzohydrazide showed the most effective antimicrobial activity with minimum inhibitory concentration values of 0.82, 2.5, 1.7, 15.2, and 37.5 μg mL–1 against B. subtilis, S. aureus, E. coli, P. fluorescence, and C. albicans, respectively. The biological assay indicated that the presence of the electron-withdrawing groups in the aroylhydrazones improved their antimicrobial activities.
References
[1] M. V. Angelusiu, S. F. Barbuceanu, C. Draghici, G. L. Almajan, Eur. J. Med. Chem. 2010, 45, 2055.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjs12qtLc%3D&md5=d4609818871048cf16df1e150c38d256CAS |
[2] O. O. Ajani, C. A. Obafemi, O. C. Nwinyi, D. A. Akinpelu, Bioorg. Med. Chem. 2010, 18, 214.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFykurrL&md5=7e98e8e88e3063989c62b7222b4326b6CAS |
[3] G. Visbal, G. San-Blas, A. Maldonado, A. Alvarez-Aular, M. V. Capparelli, J. Murgich, Steroids 2011, 76, 1069.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXptVWiu70%3D&md5=f3c7512ae7af543f8833c1dc293e9cc7CAS |
[4] Y. H. Zhang, L. Zhang, L. Liu, J. X. Guo, D. L. Wu, G. C. Xu, X. H. Wang, D. Z. Jia, Inorg. Chim. Acta 2010, 363, 289.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFyjt7jK&md5=5715211feea9e610cf88bf0ec4f9b375CAS |
[5] T. Horiuchi, J. Chiba, K. Uoto, T. Soga, Bioorg. Med. Chem. Lett. 2009, 19, 305.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmtFOl&md5=f38435ad288db02512579c4e3b4fcea8CAS |
[6] M. A. A. El-Sayed, N. I. Abdel-Aziz, A. A. M. Abdel-Aziz, A. S. El-Azab, Y. A. Asiri, K. E. H. ElTahir, Bioorg. Med. Chem. 2011, 19, 3416.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmvFWmtro%3D&md5=6f5407b92a9db2e2d207f73b88103111CAS |
[7] S. M. Sondhi, M. Dinodia, A. Kumar, Bioorg. Med. Chem. 2006, 14, 4657.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XltVGqtbo%3D&md5=d6e282c70654fdb13b4e0959176f0390CAS |
[8] P. Krishnamoorthy, P. Sathyadevi, A. H. Cowley, R. R. Butorac, N. Dharmaraj, Eur. J. Med. Chem. 2011, 46, 3376.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnsVerurc%3D&md5=203c40c58e7109b83a4f705ff0363f37CAS |
[9] P. G. Avaji, C. H. V. Kumar, S. A. Patil, K. N. Shivananda, C. Nagaraju, Eur. J. Med. Chem. 2009, 44, 3552.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXoslGiu7g%3D&md5=52d21c819e2c9648e8ff25bc3925c39eCAS |
[10] L. C. Felton, J. H. Brewer, Science 1947, 105, 409.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaH2sXitFagtw%3D%3D&md5=a42c1dd30af6c5fb8174b05f9400edc1CAS |
[11] M. Gopalakrishnan, J. Thanusu, V. Kanagarajan, R. Govindaraju, J. Enzym. Inhib. Med. Ch. 2009, 24, 52.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVWjsLo%3D&md5=b68a6a4bd32bea94920e541a3fc010c2CAS |
[12] L. Shi, H.-M. Ge, S.-H. Tan, H.-Q. Li, Y.-C. Song, H.-L. Zhu, R.-X. Tan, Eur. J. Med. Chem. 2007, 42, 558.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXktVensbo%3D&md5=c8841ec9815b62bdca5170bfc86e2e24CAS |
[13] N. P. Rai, V. K. Narayanaswamy, T. Govender, B. K. Manuprasad, S. Shashikanth, P. N. Arunachalam, Eur. J. Med. Chem. 2010, 45, 2677.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXkvFeitLs%3D&md5=0c3bab8b72e0640b77d4dba81aec48dfCAS |
[14] N. P. Rai, V. K. Narayanaswamy, S. Shashikanth, P. N. Arunachalam, Eur. J. Med. Chem. 2009, 44, 4522.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1GgtbrJ&md5=1c3281f8433e5499ff85910aae40efe4CAS |
[15] R.-H. Hui, P. Zhou, Z.-L. You, Ind. J. Chem. A 2009, 48, 1102.
[16] Z.-L. You, H.-L. Zhu, Z. Anorg. Allg. Chem. 2006, 632, 140.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtleltb3L&md5=324edd45b969ecf8310dabf27beeb627CAS |
[17] Z.-L. You, Q.-Z. Jiao, Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 2006, 36, 713.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXms1Gjuw%3D%3D&md5=916ca9a39717cfa4d3ccaebd2f18292bCAS |
[18] S. N. Podyachev, I. A. Litvinov, R. R. Shagidullin, B. I. Buzykin, I. Bauer, D. V. Osyanina, L. V. Avvakumova, S. N. Sudakova, W. D. Habicher, A. I. Konovalov, Spectrochim. Acta A Mol. Biomol. Spectrosc. 2007, 66, 250.
| Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2s%2Fht1Clsw%3D%3D&md5=919d0458ce3e4768642e69e7d679de23CAS |
[19] S. M. S. V. Wardell, M. V. N. de Souza, J. L. Wardell, J. N. Low, C. Glidewell, Acta Crystallogr. 2005, C61, o683.
| 1:CAS:528:DC%2BD2MXht1Oht7fO&md5=b6981c947d775dfb82c05992e6354cfdCAS |
[20] X.-L. Wang, Z.-L. You, C. Wang, J. Chem. Crystallogr. 2011, 41, 621.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXktVSjsro%3D&md5=6040cf58bc8ea2f228c9acb994bbf73eCAS |
[21] O. O. Güven, T. Erdogan, H. Goker, S. Yildiz, Bioorg. Med. Chem. 2007, 17, 2233.
| Crossref | GoogleScholarGoogle Scholar |
[22] J. Meletiadis, J. F. Meis, J. W. Mouton, J. P. Donnelly, P. E. Verweij, J. Clin. Microbiol. 2000, 38, 2949.
| 1:CAS:528:DC%2BD3cXlvFKgs70%3D&md5=4d925b00ae166cc3505c1099ca2f83d2CAS |
[23] S. M. A. R. T. Bruker (Version 5.625) and SAINT (Version 6.01) 2007 (Bruker AXS Inc.: Madison, WI).
[24] G. M. Sheldrick, SADABS. Program for Empirical Absorption Correction of Area Detector 1996 (University of Göttingen: Göttingen).
[25] G. M. Sheldrick, SHELXTL V5.1 Software Reference Manual 1997 (Bruker AXS, Inc.: Madison, WI).