Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Solid-State Methylamine VUV Irradiation Study Using Carbon Monoxide as an H Radical Scavenger

Jean-Baptiste Bossa A B , Fabien Borget A C , Fabrice Duvernay A , Grégoire Danger A , Patrice Theulé A and Thierry Chiavassa A
+ Author Affiliations
- Author Affiliations

A Physique des Interactions Ioniques et Moléculaires, UMR 6633 Aix-Marseille Université, CNRS, Centre St Jérôme, Case 252, 13397 Marseille Cedex 20, France.

B Current address: Sackler Laboratory for Astrophysics, Leiden Observatory, Leiden University, PO Box 9513, 2300 RA Leiden, the Netherlands.

C Corresponding author. Email: fabien.borget@univ-provence.fr

Australian Journal of Chemistry 65(2) 129-137 https://doi.org/10.1071/CH11409
Submitted: 21 October 2011  Accepted: 17 November 2011   Published: 6 January 2012

Abstract

Solid-phase methylamine (CH3NH2) was vacuum ultraviolet (VUV) photoprocessed at low temperature (20 K) using a hydrogen flow discharge lamp, which allows irradiation down to 120 nm. Methanimine (CH2=NH), the methylammonium cation (CH3NH3+) and the counterion CN, as well as the amino radical (NH2), methane (CH4) and ammonia (NH3), were identified as the photoproducts by using FTIR spectroscopy. So far, the branching ratios of the photodissociation pathways of methylamine in the solid phase remain unknown. The methylamine molecule holds two non-equivalent hydrogen atoms on the methyl and the amino group, so we can expect the formation of two distinct radicals via a carbon–hydrogen or a nitrogen–hydrogen bond cleavage, namely CH2NH2 and CH3NH. These radicals are highly reactive and may reform methylamine with hydrogen atom recombination. Their direct infrared spectroscopic detection is therefore tricky. To solve that problem, we use carbon monoxide (CO) as an H radical scavenger, forming the intermediate species HCO. After the irradiation of a CH3NH2 : CO binary ice mixture, formamide (NH2CHO) and N-methylformamide (CH3NHCHO) were identified as the main photoproducts using both infrared and mass spectrometry. We give a rough approximation of the branching ratios, which are in agreement with previous studies in the gas phase.


References

[1]  N. Fourikis, K. Takagi, M. Morimoto, Astrophys. J. 1974, 191, L139.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2cXkvFOmurg%3D&md5=deca5880b7f6478b47fec0500f8afc88CAS |

[2]  N. Kaifu, M. Morimoto, K. Nagane, K. Akabane, T. Iguchi, K. Takagi, Astrophys. J. 1974, 191, L135.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2cXkvFOlsro%3D&md5=2ec24a8fd05dfd3e709c8e0ff8c5ea18CAS |

[3]  E. Herbst, Astrophys. J. 1985, 292, 484.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXktFCitLs%3D&md5=67ff1690f922accab3bc9084f9f2d64eCAS |

[4]  K. Ogura, C. Migita, T. Yamada, Chem. Lett. 1988, 17, 1563.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  E. P. Gardner, J. R. McNesby, J. Photochem. 1980, 13, 353.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXlsVSrtbg%3D&md5=17133e33b4606dffe3ad03349cb56256CAS |

[6]  P. Theule, F. Borget, F. Mispelaer, G. Danger, F. Duvernay, J. C. Guillemin, T. Chiavassa, Astron. Astrophys. 2011, 534, A64.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  Y. S. Kim, R. I. Kaiser, Astrophys. J. 2011, 729, 68.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  E. Dartois, Space Sci. Rev. 2005, 119, 293.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1Ohs7fK&md5=630a4317663281c0f6482988800d8bd9CAS |

[9]  J.-B. Bossa, F. Borget, F. Duvernay, P. Theulé, T. Chiavassa, J. Phys. Chem. A 2008, 112, 5113.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmtVOgtbY%3D&md5=c71d5f32275cfd3bfb3c05037beacb0eCAS |

[10]  J.-B. Bossa, F. Duvernay, P. Theulé, F. Borget, L. d’Hendecourt, T. Chiavassa, Astron. Astrophys. 2009, 506, 601.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmt1Cltg%3D%3D&md5=07fe87594a967bbc20833c6ef5d90dd9CAS |

[11]  J.-B. Bossa, F. Borget, F. Duvernay, P. Theulé, T. Chiavassa, J. Phys. Org. Chem. 2010, 23, 333.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXktVCktbs%3D&md5=8ef1b0851dbdedeccec986807f432f98CAS |

[12]  C. W. Lee, J. K. Kim, E. S. Moon, Y. C. Minh, H. Kang, Astrophys. J. 2009, 697, 428.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXntVGlu7Y%3D&md5=256c8a42acb045f47c61942cc98f695cCAS |

[13]  P. D. Holtom, C. J. Bennett, Y. Osamura, N. J. Mason, R. I. Kaiser, Astrophys. J. 2005, 626, 940.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXms12gtbs%3D&md5=5c9f642207ae08939722cea7803c9895CAS |

[14]  A. Lafosse, M. Bertin, A. Domaracka, D. Pliszka, E. Illenberger, R. Azria, Phys. Chem. Chem. Phys. 2006, 8, 5564.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1CqurbM&md5=89adf8a18b0fa6ca05a8973b3a0f0ce4CAS |

[15]  J. V. Michael, W. A. Noyes, J. Am. Chem. Soc. 1963, 85, 1228.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3sXntVyktg%3D%3D&md5=b01872bc190abe6670587295d7224d88CAS |

[16]  E. P. Gardner, J. R. McNesby, J. Phys. Chem. 1982, 86, 2646.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XktlWisbk%3D&md5=52cee7e28986a286861839b2cf351481CAS |

[17]  S. G. Hadley, D. H. Volman, J. Am. Chem. Soc. 1967, 89, 1053.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2sXmsVylug%3D%3D&md5=af9e4320e1fc574dda2d1c1cfd1c820fCAS |

[18]  P. A. Gerakines, W. A. Schutte, P. Ehrenfreund, Astron. Astrophys. 1996, 312, 289.
         | 1:CAS:528:DyaK28XlsFSju7o%3D&md5=ccad916f57382733c45807b7a9176294CAS |

[19]  M. H. Moore, R. L. Hudson, Icarus 2003, 161, 486.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhs1CgsLw%3D&md5=736b228e93766a7b967909f575d9e734CAS |

[20]  H. Okabe, Photochemistry of Small Molecules 1978 (Wiley: New York, NY).

[21]  N. G. Moll, D. R. Clutter, W. E. Thompson, J. Chem. Phys. 1966, 45, 4469.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2sXisVeqsg%3D%3D&md5=78c4c12038adcd7630bc2f064b40bb5bCAS |

[22]  M. E. Jacox, D. E. Milligan, J. Chem. Phys. 1971, 54, 919.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3MXmvFOjug%3D%3D&md5=64be3f3bbb0b7d706f746148cdcc8635CAS |

[23]  R. D. J. Froese, J. D. Goddard, J. Phys. Chem. 1993, 97, 7484.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXksFKlsLk%3D&md5=b252b2e41151c664bdab21a0ec21dde4CAS |

[24]  G. Danger, F. Borget, M. Chomat, F. Duvernay, P. Theulé, J.-C. Guillemin, L. Le Sergeant d’Hendecourt, T. Chiavassa, Astron. Astrophys. 2011, 535, A47.
         | Crossref | GoogleScholarGoogle Scholar |

[25]  E. Castellucci, J. Mol. Struct. 1974, 23, 449.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2MXjs12ksg%3D%3D&md5=a4b5e83de187f693c014dc0380d2714eCAS |

[26]  R. D. Waldron, J. Chem. Phys. 1953, 21, 734.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG3sXktVaktw%3D%3D&md5=f52ac62e6a076dbae4798f5b4f19e9e8CAS |

[27]  A. Cabana, C. Sandorfy, Spectrochim. Acta [A] 1962, 18, 843.
         | 1:CAS:528:DyaF38Xks1Sgtb0%3D&md5=775f3b140e02d3039bfe54b38ef8e868CAS |

[28]  M. E. Jacox, W. E. Thompson, J. Chem. Phys. 2007, 126, 054308.
         | Crossref | GoogleScholarGoogle Scholar |

[29]  D. E. Milligan, M. E. Jacox, J. Chem. Phys. 1965, 43, 4487.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF28XisVWluw%3D%3D&md5=0808e53b61c664f7a7a92fee9099ca49CAS |

[30]  J. R. Ferraro, G. Sill, U. Fink, Appl. Spectrosc. 1980, 34, 525.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXlslKgurk%3D&md5=b34e88688e4d10c5c67be246c51e3ba6CAS |

[31]  R. M. Silverstein, G. C. Bassler, Spectrometric Identification of Organic Compounds 1st edn 1963 (Wiley: New York, NY).

[32]  M. P. Bernstein, S. A. Sandford, L. J. Allamandola, S. Chang, M. A. Scharberg, Astrophys. J. 1995, 454, 327.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XktVCksQ%3D%3D&md5=a9baac275b7b329fa889f2ca32579817CAS |

[33]  C. J. Bennett, R. I. Kaiser, Astrophys. J. 2007, 660, 1289.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmsVygtLg%3D&md5=2f091c7ae41c4d6b0d0e21d43ecdafb7CAS |

[34]  C. J. Bennett, C. S. Jamieson, Y. Osamura, R. I. Kaiser, Astrophys. J. 2005, 624, 1097.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXltlyjtLc%3D&md5=3b13a10920ab4472be89c985022b70d3CAS |

[35]  G. E. Ewing, W. E. Thompson, G. C. Pimentel, J. Chem. Phys. 1960, 32, 927.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3cXnvVKkug%3D%3D&md5=1648c5b09e48297ac397a7a0ad17df62CAS |

[36]  A. G. G. M. Tielens, W. Hagen, Astron. Astrophys. 1982, 114, 245.
         | 1:CAS:528:DyaL3sXpslyj&md5=c08878d47a35a1f490654760ce71d470CAS |

[37]  N. Watanabe, T. Shiraki, A. Kouchi, Astrophys. J. 2003, 588, L121.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXksFOhtLc%3D&md5=7ba8173aa4693b9df160c31745203e15CAS |

[38]  J. R. Brucato, G. A. Baratta, G. Strazzulla, Astron. Astrophys. 2006, 455, 395.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVKisLnP&md5=4e2a1edc76a29c75e1d35b3b6a10bcdeCAS |

[39]  A. Wexler, Appl. Spectrosc. Rev. 1967, 1, 29.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1cXptFantg%3D%3D&md5=b01bb764b1a5a93cbbfd694320fc5d5dCAS |

[40]  W. A. Schutte, L. J. Allamandola, S. A. Sandford, Icarus 1993, 104, 118.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXjtVektbo%3D&md5=28f0d0eaaff1fd218faf4647c4bf46bcCAS |

[41]  J. M. Hollis, F. J. Lovas, A. J. Remijan, P. R. Jewell, V. V. Ilyushin, I. Kleiner, Astrophys. J. 2006, 643, L25.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmtVOrs7c%3D&md5=589ed3cc4f60519bebb7be2e395940fbCAS |

[42]  R. H. Rubin, G. W. Swenson, R. C. Benson, H. L. Tigelaar, W. H. Flygare, Astrophys. J. 1971, 169, L39.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3MXltlGlu7k%3D&md5=c176d45d8127671ab071c4939c859201CAS |

[43]  D. Bockelée-Morvan, D. C. Lis, J. E. Wink, D. Despois, J. Crovisier, R. Bachiller, D. J. Benford, N. Biver, P. Colom, J. K. Davies, Astron. Astrophys. 2000, 353, 1101.

[44]  S. Raunier, T. Chiavassa, F. Duvernay, F. Borget, J. Aycard, E. Dartois, L. d’Hendecourt, Astron. Astrophys. 2004, 416, 165.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjsFGkurg%3D&md5=a16a00d1214b4aac74c71179bb935fadCAS |

[45]  W. A. Schutte, A. C. A. Boogert, A. Tielens, D. C. B. Whittet, P. A. Gerakines, J. E. Chiar, P. Ehrenfreund, J. M. Greenberg, E. F. Van Dishoeck, T. H. De Graauw, Astron. Astrophys. 1999, 343, 966.
         | 1:CAS:528:DyaK1MXit1Slt7Y%3D&md5=f79d8d05e42f7739973e923d736a812aCAS |

[46]  A. Gómez-Zavaglia, R. Fausto, Phys. Chem. Chem. Phys. 2003, 5, 3154.
         | Crossref | GoogleScholarGoogle Scholar |

[47]  M. Remko, B. M. Rode, J. Mol. Struct. THEOCHEM 1995, 339, 125.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXnvFWksb0%3D&md5=4cf8a0ee70f27f0958c25c1e11aa6b9bCAS |

[48]  M. Lattelais, Y. Ellinger, B. Zanda, Int. J. Astrobiol. 2007, 6, 37.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmtl2hu7o%3D&md5=05f2ca0119a1e18443faf9fc8b0e2f18CAS |

[49]  S. S. Prasad, S. P. Tarafdar, Astrophys. J. 1983, 267, 603.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXit1Ckt78%3D&md5=a0a1f02ee5ff7e1b31c4ae60e499ecdcCAS |