Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Computational Design of Thiourea-based Cyclophane Sensors for Small Anions

Huifang Xie A and Ming Wah Wong A B
+ Author Affiliations
- Author Affiliations

A Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543.

B Corresponding author. Email: chmwmw@nus.edu.sg

Australian Journal of Chemistry 65(3) 303-313 https://doi.org/10.1071/CH11389
Submitted: 8 October 2011  Accepted: 30 December 2011   Published: 29 February 2012

Abstract

The host–guest binding properties of a tri-thiourea cyclophane receptor (1) with several common anions have been investigated using density functional theory (DFT) and molecular dynamics calculations. Receptor 1 is predicted to be an effective receptor for binding small halogen and Y-shaped (NO3 and AcO) anions in the gas phase, cyclohexane and chloroform. The calculated order of anion binding affinity for the receptor 1 in chloroform is F > Cl > AcO > NO3 >Br > H2PO4 > HSO4. The binding free energies are strongly influenced by a dielectric solvent medium. The structures of the receptor–anion complexes are characterized by multiple (typically 6) hydrogen bonds in all cases. The overall binding affinity of various anions is determined by the basicity of anion, size and shape of the binding site, and solvent medium. Explicit chloroform solvent molecular dynamics simulations of selected receptor–anion complexes reveal that the anions are strongly bound within the binding pocket via hydrogen-bonding interactions to all the receptor protons throughout the simulation. A sulfur analogue of receptor 1 (2), with a larger central cavity, is shown to be a more effective sensor than 1 for small anions. Two different approaches to develop the thiourea-based cyclophane receptor into a chromogenic sensor were examined.


References

[1]  P. D. Beer, P. A. Gale, Angew. Chem. Int. Ed. 2001, 40, 486.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhsVSrurc%3D&md5=19339412c3486373623019a5c98d528dCAS |

[2]  P. A. Gale, Coord. Chem. Rev. 2003, 240, 191.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXktVKjtbw%3D&md5=78ed7899ae4ffa20c8032a2e9e031598CAS |

[3]  P. A. Gale, Coord. Chem. Rev. 2006, 250, 3219.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFKktbbO&md5=b52b002cfefecb80be395993c891cd6fCAS |

[4]  J. L. Sessler, P. A. Gale, W.-S. Cho, Anion Receptor Chemistry, 2006 (Royal Society of Chemistry: Cambridge).

[5]  A.-F. Li, J.-H. Wang, F. Wang, Y.-B. Jiang, Chem. Soc. Rev. 2010, 39, 3729.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFKksLfL&md5=bdc083b0be0561b020c410a1729bd83eCAS |

[6]  D. J. Cram, Angew. Chem. Int. Ed. Engl. 1988, 27, 1009.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  T. Gunnlaugsson, M. Glynn, G. M. Tocci, P. E. Kruger, F. M. Pfeffer, Coord. Chem. Rev. 2006, 250, 3094.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFKktbnJ&md5=2bbd995981991c06774452cb49709b48CAS |

[8]  K. Ghosh, S. Adhikari, Tetrahedron Lett. 2006, 47, 8165.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVyksL3N&md5=e89c6423f835da80b3523ef3a58f255cCAS |

[9]  D. A. Jose, D. K. Kumar, B. Ganguly, D. Amitiva, Tetrahedron Lett. 2005, 46, 5343.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlvV2isbg%3D&md5=d8d0cfb1f5ee2dc855d1a62ccf3dc536CAS |

[10]  T. Gunnlaugsson, P. E. Kruger, P. Jensen, J. Tierney, H. D. P. Ali, G. M. Hussey, J. Org. Chem. 2005, 70, 10875.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1GjurnO&md5=4f0d5419bd28e248e4c2d18fb7345c19CAS |

[11]  K. H. Lee, J.-I. Hong, Tetrahedron Lett. 2000, 41, 6083.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlt1yrsLo%3D&md5=fe757892619675121f78792677d48661CAS |

[12]  S. Sasaki, M. Mizuno, K. Naemura, Y. Tobe, J. Org. Chem. 2000, 65, 275.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXpvFE%3D&md5=a47b778798217f4f7b9e7c1faa8fd29aCAS |

[13]  D. A. Jose, A. Singh, A. Das, B. Ganguly, Tetrahedron Lett. 2007, 48, 3695.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXkslOqt7o%3D&md5=d4b16e6137410bf86d1606ebd2d4b025CAS |

[14]  R. A. Pascal, J. Spergel, D. V. Engbersen, Tetrahedron Lett. 1986, 27, 4099.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXitFeqs70%3D&md5=ed32ce4c004ee1396c6108d2604f84e7CAS |

[15]  D. Heyer, J. M. Lehn, Tetrahedron Lett. 1986, 27, 5869.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXkslOktbw%3D&md5=f22e44531642d95172e044149ed9466fCAS |

[16]  M. Mascal, Angew. Chem. Int. Ed. 2006, 45, 2890.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XkvVeqsrc%3D&md5=c559fd7cf4049a26427a1497c68c05a8CAS |

[17]  K. Niikura, A. P. Bisson, E. V. Anslyn, J. Chem. Soc., Perkin Trans. 2 1999, 1111.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjtlert70%3D&md5=a5656a370c4d5cc0a81a3282a149e58cCAS |

[18]  I. Hisaki, S. Sasaki, K. Hirose, Y. Tobe, Eur. J. Org. Chem. 2007, 607.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlelsbs%3D&md5=f6c0fdba0979d4cbde3895e78e12c79aCAS |

[19]  C. Suksai, T. Tuntulani, Chem. Soc. Rev. 2003, 32, 192.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXkt1emt7c%3D&md5=5712ca677c42edd934b9d3881f5fba7fCAS |

[20]  R. Martinez-Mañez, F. Sancenon, Chem. Rev. 2003, 103, 4419.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  A. D. Becke, J. Chem. Phys. 1993, 98, 5648.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXisVWgtrw%3D&md5=ebe7dc68a8c38908388e1cd8680e671cCAS |

[22]  C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXktFWrtbw%3D&md5=1db8a301b13c0d54e6e18228104ee4b7CAS |

[23]  M. Cossi, V. Barone, R. Cammi, J. Tomasi, Chem. Phys. Lett. 1996, 255, 327.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XjsVOmtrw%3D&md5=85b5e7d93902daca79f78eeabdbe380dCAS |

[24]  V. Barone, M. Cossi, J. Tomasi, J. Chem. Phys. 1997, 107, 3210.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXlsVOqt7w%3D&md5=600bd221ad6ea0fd11b64878954944a3CAS |

[25]  A. E. Reed, L. A. Curtiss, F. Weinhold, Chem. Rev. 1988, 88, 899.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXmtlOitbw%3D&md5=444a240d6aa63d3961f0b1b0d906de82CAS |

[26]  R. Bauernschmitt, R. Ahlrichs, Chem. Phys. Lett. 1996, 256, 454.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XksFWltrs%3D&md5=f1be2eb64db20017db647c6c9fed3858CAS |

[27]  M. E. Casida, C. Jamorski, K. C. Casida, D. R. Salahub, J. Chem. Phys. 1998, 108, 4439.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhsV2js7w%3D&md5=257990985f37f4e690c3408b37bc35c2CAS |

[28]  M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr, T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian 03, 2004, (Gaussian, Inc.: Wallingford, CT).

[29]  D. A. Case, T. A. Darden, T. E. Cheatham III, C. L. Simmerling, J. Wang, R. E. Duke, R. Luo, M. Crowley, R. C. Walker, W. Zhang, K. M. Merz, B. Wang, S. Hayik, A. Roitberg, G. Seabra, I. Kolossváry, K. F. Wong, F. Paesani, J. Vanicek, X. Wu, S. R. Brozell, T. Steinbrecher, H. Gohlke, L. Yang, C. Tan, J. Mongan, V. Hornak, G. Cui, D. H. Mathews, M. G. Seetin, C. Sagui, V. Babin, P. A. Kollman, AMBER 10, University of California, San Francisco, 2008.

[30]  J. M. Wang, R. M. Wolf, J. W. Caldwell, P. A. Kollman, D. A. Case, J. Comput. Chem. 2004, 25, 1157.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXksFakurc%3D&md5=fa0fbac626b2b739a531245f9b41eddaCAS |

[31]  P. Cieplak, J. Caldwell, P. A. Kollman, J. Comput. Chem. 2001, 22, 1048.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXksFertbc%3D&md5=f8c691f0508c0471f2817fcd75737c61CAS |

[32]  J. R. Blas, M. Marquez, J. L. Sessler, F. J. Luque, M. Orozco, J. Am. Chem. Soc. 2002, 124, 12796.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XnsFWmtbw%3D&md5=7f8ad27e35e8c6e121e966dafcbb187eCAS |

[33]  S. F. Boys, F. Bernardi, Mol. Phys. 1970, 19, 553.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1alt7fM&md5=3313841d741866de3c5ba40d0c276461CAS |

[34]  P. W. Atkins, D. F. Shriver, Inorganic Chemistry, 3rd ed., 1999 (Oxford University Press: Oxford).

[35]  M. B. Smith, J. March, March’s Advanced Organic Chemistry: Reactions, Meachanisms, and Structure, 4th ed., 1992 (John Wiley & Sons: Hoboken).

[36]  S. L. Wiskur, H. Ait-Haddou, J. J. Lavigne, E. V. Anslyn, Acc. Chem. Res. 2001, 34, 963.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXotFykt74%3D&md5=e450563950f0896d221e5eecdaa58881CAS |

[37]  B. T. Nguyen, E. V. Anslyn, Coord. Chem. Rev. 2006, 250, 3118.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFKktbnK&md5=e6f9a8a285d6f49c16f2c234f43313b9CAS |

[38]  M. M. Linn, D. C. Poncio, V. G. Machado, Tetrahedron Lett. 2007, 48, 4547.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmtVamsLs%3D&md5=4f935f35cf9d2e6ef2a1370f8f710f06CAS |

[39]  P. A. Gale, L. J. Twyman, C. I. Handlin, J. L. Sessler, Chem. Commun. 1999, 1851.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXlvFSqurw%3D&md5=cdd543f9e8d14647b48453ed766d0f49CAS |