First Synthesis of Diindeno[1,2-g:1′,2′-s]rubicene Derivatives and their Evaluation as Semiconductors
Mark Bown A , Christopher J. Dunn A , Craig M. Forsyth B , Peter Kemppinen A , Th. Birendra Singh A , Melissa A. Skidmore A C and Kevin N. Winzenberg AA Ian Wark Laboratory, CSIRO Molecular and Health Technologies, Clayton South, Vic. 3168, Australia.
B School of Chemistry, Monash University, Clayton, Vic. 3800, Australia.
C Corresponding author. Email: melissa.skidmore@csiro.au
Australian Journal of Chemistry 65(2) 145-152 https://doi.org/10.1071/CH11375
Submitted: 21 September 2011 Accepted: 7 December 2011 Published: 23 January 2012
Abstract
Solution-processable derivatives 4a–d of the novel diindeno[1,2-g:1′,2′-s]rubicene ring system have been prepared in three steps from 1,5-dichloroanthraquinone. Charge extraction by linearly increasing voltage measurements indicates that 4a–d have bulk mobilities <10–7 cm2 V–1 s–1. Consistent with these low mobility values, field-effect transistors fabricated from 4a–d show poor performance. X-ray crystallographic analyses indicate that in the crystalline state, molecules of compounds 4b–d pack in a manner that hinders π–π stacking, thus preventing strong electronic coupling between molecules that is essential for high charge mobility semiconductor performance.
References
[1] (a) S. M. Goetz, C. M. Erlen, H. Grothe, B. Wolf, P. Lugli, G. Scarpa, Org. Electron. 2009, 10, 573.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmtVSju78%3D&md5=9a386828abb198b859ab4823d05a0dcbCAS |
(b) D. M. de Leeuw, E. Cantatore, Mater. Sci. Semicond. Process. 2008, 11, 199.
| Crossref | GoogleScholarGoogle Scholar |
(c) K. Myny, S. Steudel, S. Smout, P. Vicca, F. Furthner, B. van der Putten, A. K. Tripathi, G. H. Gelinck, J. Genoe, W. Dehaene, P. Heremans, Org. Electron. 2010, 11, 1176.
| Crossref | GoogleScholarGoogle Scholar |
[2] (a) S. Allard, M. Forster, B. Souharce, H. Thiem, U. Scherf, Angew. Chem. Int. Ed. 2008, 47, 4070.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmslyksro%3D&md5=b534715b7659bf951a6daed82f029bb6CAS |
(b) Y. Yamashita, Sci. Technol. Adv. Mater. 2009, 10, 024313.
| Crossref | GoogleScholarGoogle Scholar |
[3] (a) J. E. Anthony, Angew. Chem. Int. Ed. 2008, 47, 452.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXptlOhtA%3D%3D&md5=3e54dbef333c24bf8ffa6e62062d05bfCAS |
(b) M. M. Payne, S. A. Odom, S. R. Parkin, J. E. Anthony, Org. Lett. 2004, 6, 3325.
| Crossref | GoogleScholarGoogle Scholar |
(c) S. Subramanian, S. K. Park, S. R. Parkin, V. Podzorov, T. N. Jackson, J. E. Anthony, J. Am. Chem. Soc. 2008, 130, 2706.
| Crossref | GoogleScholarGoogle Scholar |
[4] (a) O. Ostroverkhova, D. G. Cooke, F. A. Hegmann, J. E. Anthony, V. Podzorov, M. E. Gershenson, O. D. Jurchescu, T. T. M. Palstra, Appl. Phys. Lett. 2006, 88, 162101.
| Crossref | GoogleScholarGoogle Scholar |
(b) C. V. Sundar, J. Zaumseil, V. Podzorov, E. Menard, R. L. Willett, T. Someya, M. E. Gershenson, J. A. Rogers, Science 2004, 303, 1644.
(c) V. Podzorov, E. Menard, A. Borissov, V. Kiryukhin, J. A. Rogers, M. E. Gershenson, Phys. Rev. Lett. 2004, 93, 086602.
| Crossref | GoogleScholarGoogle Scholar |
(d) V. Podzorov, E. Menard, J. A. Rogers, M. E. Gershenson, Phys. Rev. Lett. 2005, 95, 226601.
| Crossref | GoogleScholarGoogle Scholar |
(e) J. Takeya, M. Yamagishi, Y. Tominari, R. Hirahara, Y. Nakazawa, T. Nishikawa, T. Kawase, T. Shimoda, S. Ogawa, Appl. Phys. Lett. 2007, 90, 102120.
| Crossref | GoogleScholarGoogle Scholar |
[5] H. Okamoto, N. Kawasaki, Y. Kaji, Y. Kubozono, A. Fujiwara, M. Yamaji, J. Am. Chem. Soc. 2008, 130, 10470.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXosF2nsLY%3D&md5=8750e063929f61749bc7de32f6fe0bbbCAS |
[6] P. Gao, D. Beckmann, H. N. Tsao, X. Feng, V. Enkelmann, M. Baumgarten, W. Pisula, K. Müllen, Adv. Mater. 2009, 21, 213.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVyntLg%3D&md5=fc3fae9055317fe940a7a5de13b4cb7cCAS |
[7] (a) H. Meng, F. Sun, M. B. Goldfinger, G. D. Jaycox, Z. Li, W. J. Marshall, G. S. Blackman, J. Am. Chem. Soc. 2005, 127, 2406.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXptlSgsg%3D%3D&md5=3385f8f2cc9319218d434c2d9a4ee99bCAS |
(b) H. Ebata, T. Izawa, E. Miyazaki, K. Takimiya, M. Ikeda, H. Kuwabara, T. Yui, J. Am. Chem. Soc. 2007, 129, 15732.
| Crossref | GoogleScholarGoogle Scholar |
(c) S. Subramanian, S. K. Park, S. R. Parkin, V. Podzorov, T. N. Jackson, J. E. Anthony, J. Am. Chem. Soc. 2008, 130, 2706.
| Crossref | GoogleScholarGoogle Scholar |
(d) G. R. Llorente, M.-B. Dufourg-Madec, D. J. Crouch, R. G. Pritchard, S. Ogier, S. G. Yeates, Chem. Commun. 2009, 3059.
| Crossref | GoogleScholarGoogle Scholar |
(e) M. M. Payne, S. R. Parkin, J. E. Anthony, C.-C. Kuo, T. N. Jackson, J. Am. Chem. Soc. 2005, 127, 4986.
(f) X.-C. Li, H. Sirringhaus, F. Garnier, A. B. Holmes, S. C. Moratti, N. Feeder, W. Clegg, S. J. Teat, R. H. Friend, J. Am. Chem. Soc. 1998, 120, 2206.
| Crossref | GoogleScholarGoogle Scholar |
[8] R. G. Harvey, Polycyclic Aromatic Hydrocarbons 1997, p. 586 (Wiley/VCH: New York, NY).
[9] H. Ikeda, R. Maeda, M. Matsuura, WO/2009/130991, PCT/JP2009/057044, 2009.
[10] A. R. Mohebbi, F. Wudl, Chem. – Eur. J. 2011, 17, 2642.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXitFajt70%3D&md5=1c1a51a2b2f2046e8b9a8c262b18de17CAS |
[11] (a) M. Smet, J. Dijk, W. Dehaen, Synlett. 1999, 495.
| 1:CAS:528:DyaK1MXit12jsLs%3D&md5=196fffdb0ebcecdff2ea387103b186a5CAS |
(b) L. Wang, P. B. Shevlin, Org. Lett. 2000, 2, 3703.
[12] (a) G. Juška, K. Genevičius, K. Arlauskas, R. Österbacka, H. Stubb, Macromol. Symp. 2004, 212, 209.
| Crossref | GoogleScholarGoogle Scholar |
(b) G. Dennler, A. J. Mozer, G. Juška, A. Pivrikas, R. Österbacka, A. Fuchsbauer, N. S. Sariciftci, Org. Electron. 2006, 7, 229.
| Crossref | GoogleScholarGoogle Scholar |
(c) A. J. Mozer, N. S. Sariciftci, A. Pivrikas, R. Österbacka, G. Juška, L. Brassat, H. Bässler, Phys. Rev. B 2005, 71, 035214.
| Crossref | GoogleScholarGoogle Scholar |
[13] K. Peters, H. Langhals, G. Werner, Cryst. Struct. Commun. 1981, 10, 713.
| 1:CAS:528:DyaL3MXltlCgt7c%3D&md5=b1ceccb8c9a20f94700df4f85ebce324CAS |
[14] H. Huang, J. Youn, R. P. Ortiz, Y. Zheng, A. Facchetti, T. Marks, Chem. Mater. 2011, 23, 2185.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjvValsbk%3D&md5=94bc521dea731d167aceb7301184ceecCAS |
[15] (a) S.-J. Liu, Q. Zhao, R.-F. Chen, Y. Deng, Q.-L. Fan, F.-Y. Li, L.-H. Wang, C.-H. Huang, W. Huang, Chem – Eur. J. 2006, 12, 4351.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xls1Gis7k%3D&md5=5fcafaeaba756016981adf8492056532CAS |
(b) S. P. Dudek, M. Pouderoijen, R. Abbel, A. P. H. J. Schenning, E. W. Meijer, J. Am. Chem. Soc. 2005, 127, 11763.
| Crossref | GoogleScholarGoogle Scholar |
(c) Y. Geng, S. W. Culligan, A. Trajkovska, J. U. Wallace, S. H. Chen, Chem. Mater. 2003, 15, 542.
| Crossref | GoogleScholarGoogle Scholar |
(d) H. Li, M. S. Wong, Y. Tao, J. Lu, Chem. – Eur. J. 2005, 11, 3285.
| Crossref | GoogleScholarGoogle Scholar |
[16] APEX2 v2.0, SAINT/SAINT+, SADABS, TWINABS, CELL_NOW (Bruker AXS Inc.: Madison, WI).
[17] G. M. Sheldrick, Acta Crystallogr. 2008, A64, 112.
| 1:CAS:528:DC%2BD2sXhsVGhurzO&md5=9b979ddbd87a78d6c18caa3d7e8cf709CAS |
[18] L. J. Barbour, J. Supramol. Chem. 2001, 1, 189.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXitlOlsb8%3D&md5=b8ca8c15e12e7249c9068cf6390b143aCAS |