Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Kinetics and Mechanism of the Reaction of Dichlorotetraaquaruthenium(iii) and Thiols

Suprava Nayak A C , Gouri Sankhar Brahma B and K. Venugopal Reddy A
+ Author Affiliations
- Author Affiliations

A Department of Chemistry, Osmania University, Hyderabad-500 007, India.

B Faculty of Science and Technology, The ICFAI University, Dehradun-248197, India.

C Corresponding author. Email: suprava7107@gmail.com

Australian Journal of Chemistry 65(2) 113-120 https://doi.org/10.1071/CH11352
Submitted: 26 August 2011  Accepted: 18 October 2011   Published: 25 November 2011

Abstract

The formation of an intermediate ruthenium(iii) thiolate complex by the interaction of thiols, RSH (R = glutathione and l-cysteine) and dichlorotetraaquaruthenium(iii), [RuIIICl2(H2O)4]+, is reported in the temperature range 25–40°C. The kinetics and mechanism of formation of the intermediate complex were studied as a function of [RuIIICl2(H2O)4]+, [RSH], pH, ionic strength and temperature. Reduction of the intermediate complex takes place slowly and results in the corresponding disulfides RSSR and [RuIICl2(H2O)4]+. The results are interpreted in terms of a mechanism involving a rate-determining inner-sphere one-electron transfer from RSH to the oxidant used in the present investigation and a comparison of rate and equilibrium constants is presented with activation parameters.


References

[1]  (a) M. J. Clarke, Coord. Chem. Rev. 2003, 236, 209.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXkvVyqtw%3D%3D&md5=d28d268f6e08c0f6c1f883366ebbd0cdCAS |
      (b) P. A. Dyson, G. Sava, Dalton Trans 2006, 1929.

[2]  E. Reisner, V. B. Arion, B. K. Keppler, A. J. Pombeiro, Inorg. Chim. Acta 2008, 361, 1569.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXislyqt78%3D&md5=b34c66f9e6d9ed027f7e5c4fef0dec41CAS |

[3]  S. Kapitza, M. Pongratz, M. A. Jakupec, P. Heffeter, W. Berger, L. Lackinger, B. K. Keppler, B. Marian, J. Cancer Res. Clin. Oncol. 2005, 131, 101.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXntF2lsA%3D%3D&md5=0dc47d6f9295d8eb920c23b3557e08a1CAS |

[4]  J. M. Rademaker-Lakhai, D. van den Bongard, D. Pluim, J. H. Beijnen, J. H. M. Schellens, Clin. Cancer Res. 2004, 10, 3717.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXksVKntr8%3D&md5=8de9881199571a5af5ddc24a1ed98077CAS |

[5]  B. Gava, S. Zorzet, P. Spessotto, M. Cocchietto, G. Sava, J. Pharmacol. Exp. Ther. 2006, 317, 284.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjsVWmtLc%3D&md5=9b40eda0ac37bc33ed1b73633dc87c42CAS |

[6]  G. Sava, A. Bergamo, S. Zorzet, B. Gava, C. Casarsa, M. Cocchietto, A. Furlani, V. Scarcia, B. Serli, E. Iengo, E. Alessio, G. Mestroni, Eur. J. Cancer 2002, 38, 427.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XovFSgsw%3D%3D&md5=6361d7c913fc78da548549f1c0ab6aadCAS |

[7]  (a) M. Ravera, S. Baracco, C. Cassino, P. Zanello, D. Osella, Dalton Trans. 2004, 2347.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlvF2is7o%3D&md5=7312c48ad803b91792500217536b73dfCAS |
      (b) P. Schluga, C. G. Hartinger, A. Egger, E. Reisner, M. Galanski, M. A. Jakupec, B. Keppler, Dalton Trans. 2006, 1796.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  M. M. Taqui Khan, R. S. Shukla, Polyhedron 1991, 10, 2711.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  (a) M. M. Taqui Khan, G. Ramachandraiah, A. Prakash Rao, Inorg. Chem. 1986, 25, 665.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28Xpslymsw%3D%3D&md5=35f2fcb4212db73f0775e920e24137beCAS |
      (b) M. M. Taqui Khan, G. Ramachandraiah, Inorg. Chem. 1982, 21, 2109.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  A. P. Arrigo, Free Radic. Biol. Med. 1999, 27, 936.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXns1ymsro%3D&md5=78d2fb55374b442f26f8820834c3e6a0CAS |

[11]  C. E. Hand, J. F. Honek, J. Nat. Prod. 2005, 68, 293.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXktFeluw%3D%3D&md5=d84ff570995d3472f4d1a87e97bcc2c3CAS |

[12]  C. Jacob, G. I. Giles, N. M. Giles, H. Sies, Angew. Chem. Int. Ed. 2003, 42, 4742.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXosFKntbg%3D&md5=59ccf4ca053e2331e54fb2195727b37cCAS |

[13]  T. M. Buttke, P. A. Sandstrom, Immunol. Today 1994, 15, 7.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXhvVygsb8%3D&md5=7cbc5f21b1f133dbea0cd3e569757e30CAS |

[14]  J. Darkwa, R. Olojo, E. Chikwana, R. H. Simoyi, J. Phys. Chem. A 2004, 108, 5576.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXktlGku7w%3D&md5=10e2ebd34ba22acbb368cf9d3ee1c07aCAS |

[15]  T. Shi, J. Berglund, L. I. Elding, Inorg. Chem. 1996, 35, 3498.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XjtVWgsbw%3D&md5=8c63e094bff7d11fa1c4a82919a6e230CAS |

[16]  X. Wang, D. M. Stanbury, Inorg. Chem. 2008, 47, 1224.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXisV2mtQ%3D%3D&md5=df8c156c003e2e1d427b2614fc20fe32CAS |

[17]  A. Corazza, I. Harvey, P. Sadler, Eur. J. Biochem. 1996, 236, 697.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XhslWmurw%3D&md5=9a388adb889b5443ea21b768b3a7565aCAS |

[18]  D. L. Rabenstein, K. K. Millis, K. H. Weaver, J. Org. Chem. 1993, 58, 4487.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXkslejt78%3D&md5=6adb68e464f9bb8034725d6c0c2ab928CAS |

[19]  R. Munday, C. M. Munday, C. C. Winterbourn, Free Radic. Biol. Med. 2004, 36, 757.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhsFWkurc%3D&md5=90c47a557c9e373d8f1789e095bd9285CAS |

[20]  O. Nekrassova, J. Kershaw, J. D. Wadhawan, N. S. Lawrence, R. G. Compton, Phys. Chem. Chem. Phys. 2004, 6, 1316.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhvFyis7s%3D&md5=f5f0f054095c746bdfcb784a609621d5CAS |

[21]  P. C. White, N. S. Lawrence, J. Davis, R. G. Compton, Electroanalysis 2002, 14, 89.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhsVKgt7c%3D&md5=7c45d793abf40a4d07f651ace68724d1CAS |

[22]  C. C. Lucas, E. J. King, Biochem. J. 1932, 26, 2076.
         | 1:STN:280:DC%2BD28zjsFWmug%3D%3D&md5=45a6f403165b0318a8ef60500773c5b5CAS |

[23]  (a) M. Ahmed, M. S. Iqbal, N. Tahir, A. Islam, World Appl. Sci. Journal 2011, 14, 210.
         | 1:CAS:528:DC%2BC3MXhtlajsL7L&md5=9bd63d094a5fec79d91c42cb4cf18da0CAS |
      (b) J. A. Centeno, K. G. Ishak, F. G. Mullick, W. A. Gahl, T. J. O’Leary, Appl. Spectrosc. 1994, 48, 569.
         | Crossref | GoogleScholarGoogle Scholar |

[24]  A. E. Martell, R. M. Smith, Critical Stability Constants, 2nd Supplement, Vol. 6, p. 20 (Plenum: New York, NY).

[25]  D. L. Rabenstein, J. Am. Chem. Soc. 1973, 95, 2797.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3sXktF2jurY%3D&md5=7665ac6ab3b15eb38df43d085f2bff81CAS |

[26]  V. G. Povse, J. A. Olabe, Transit. Metal Chem. 1998, 23, 657.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhvVWnurY%3D&md5=963efc45b4a34b46f79213db1cf74174CAS |

[27]  D. Chatterjee, U. Pal, S. Ghosh, R. van Eldik, Dalton Trans. 2011, 1302.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpsFyjug%3D%3D&md5=211bf10147045878eca3b321d01a9692CAS |

[28]  D. Chatterjee, H. C. Bajaj, J. Coord. Chem. 1996, 39, 117.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhtVSgsrY%3D&md5=54b1d07ebffa2ae16edb2788796ccd63CAS |

[29]  D. Chatterjee, M. S. A. Hamza, M. M. Shoukry, A. Mitra, S. Deshmukh, R. van Eldik, Dalton Trans. 2003, 203.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXht1KisLo%3D&md5=4717c8763db9ba558b1b758d5795b94aCAS |

[30]  C. G. Kuehn, H. Taube, J. Am. Chem. Soc. 1976, 98, 689.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28XhtFantr8%3D&md5=706caec886040a4f2f5a27d34881ab21CAS |

[31]  D. R. Frasca, M. J. Clarke, J. Am. Chem. Soc. 1999, 121, 8523.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXls1Kqur4%3D&md5=2350e72f12fed31479de9b41fd78cdf5CAS |

[32]  K. L. Brown, Inorg. Chim. Acta 1979, 37, L513.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXktlamsLY%3D&md5=b0ec0a2ef78475359087dd8e6bfd7538CAS |

[33]  F. Basolo, R. G. Pearson, Mechanisms of Inorganic Reactions. A Study of Metal Complexes in Solutions 1967, p. 34, 2nd edn (Wiley: New York, NY).

[34]  M. A. Olatunji, A. McAuley, Can. J. Chem. 1977, 55, 3335.
         | Crossref | GoogleScholarGoogle Scholar |

[35]  B. K. Singh, Asian J. Chem. 2005, 17, 1.
         | 1:CAS:528:DC%2BD2MXjvVahtQ%3D%3D&md5=b2b9dab3c0b1789cf35658c69e15695bCAS |

[36]  M. Hartmann, K. G. Lipponer, B. K. Keppler, Inorg. Chim. Acta 1998, 267, 137.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXnsFeltL4%3D&md5=41850c087bbc3e152e9d8ad36daf5c8fCAS |