Progress Towards Simple and Direct Detection of Adenylosuccinate Lyase Deficiency in Human Urine
Soojin Lim A , Mark Lowry A and Robert M. Strongin A BA Department of Chemistry, Portland State University, Portland, Oregon 97207, USA.
B Corresponding author. Email: strongin@pdx.edu
Australian Journal of Chemistry 64(11) 1470-1473 https://doi.org/10.1071/CH11328
Submitted: 6 August 2011 Accepted: 6 September 2011 Published: 14 October 2011
Abstract
A rhodamine based boronic acid linearly responds to increasing 5-aminoimidazole-4-carboxamide riboside (AICAr) concentrations in human urine. This method is thus an advance in detecting adenylosuccinate lyase (ADSL) deficiency as AICAr is a model riboside for the ADSL substrates succinyladenosine (S-Ado) and succinylaminoimidazolecarboxamide riboside (SAICAr). ADSL deficiency is a rare but devastating disease of de novo purine synthesis in infants. Its diagnosis is also significant as it is one of the autism spectrum disorders.
References
[1] A. C. Olivieri, J. A. Arancibia, A. M. de la Pena, I. Duran-Meras, A. E. Mansilla, Anal. Chem. 2004, 76, 5657.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXntF2itr4%3D&md5=f2d832b3b4676ebc03b9ee605fcbd21dCAS |
[2] M. M. Sena, M. G. Trevisan, R. J. Poppi, Talanta 2006, 68, 1707.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XptVSitg%3D%3D&md5=e80da7ed6fe22c0f8978c6f0452bcbfdCAS |
[3] J. Sadecka, J. Tothova, Czech. J. Food Sci. 2007, 25, 159.
| 1:CAS:528:DC%2BD2sXhtVehsLrN&md5=a7ec0b98d953820ff9a2fb8edf3f33c4CAS |
[4] W. Chen, P. Westerhoff, J. A. Leenheer, K. Booksh, Environ. Sci. Technol. 2003, 37, 5701.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXovFeisrc%3D&md5=5b5a6b477bc2ee6a9e0a8824d60e1bd1CAS |
[5] S. Lim, J. O. Escobedo, M. Lowry, R. Strongin, Chem. Commun. 2011, 47, 8295.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXoslWqtrs%3D&md5=49968d0dc6abb9a9097234a902d79ee3CAS |
[6] S. Jiang, J. O. Escobedo, K. K. Kim, O. Alpturk, G. K. Samoei, S. O. Fakayode, I. M. Warner, O. Rusin, R. M. Strongin, J. Am. Chem. Soc. 2006, 128, 12221.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XosFartr4%3D&md5=d6e972f1444c843235077025a56d6b61CAS |
[7] S. Marie, B. Heron, P. Bitoun, T. Timmerman, G. Van den Berghe, M. F. Vincent, Am. J. Hum. Genet. 2004, 74, 1276.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXks1Cqs74%3D&md5=497095db1267f89299a5114077126770CAS |
[8] W. L. Nyhan, Mol. Genet. Metab. 2005, 86, 25.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVOksLfP&md5=4b43abfa0eecf971accf0fa6f3af6a5cCAS |
[9] E. K. Spiegel, R. F. Colman, D. Patterson, Mol. Genet. Metab. 2006, 89, 19.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XotlCjs7c%3D&md5=e59ad7853fa3ab894e4a8b98576ffbc7CAS |
[10] A. Jurecka, J. Inherit. Metab. Dis. 2009, 32, 247.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjvFOgs70%3D&md5=c139a36b5a7d4fea0f27547431531a60CAS |
[11] C. M. Andersen, R. Bro, J. Chemometr. 2003, 17, 200.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjslans78%3D&md5=c44cfba20690656e3c14eeff356f01b5CAS |