Quaternary Ammonium Spiroborate Esters and Mixed Anhydrides Derived from Aliphatic α-Hydroxy Acids and Diacids and their Wood Protection Properties
Jenny M. Carr A D , Peter J. Duggan A G , David G. Humphrey A E , Edward M. Tyndall B F and Jonathan M. White CA CSIRO Materials Science and Engineering, Private Bag 10, Clayton South, Vic. 3169, Australia.
B Centre for Green Chemistry, Monash University, Clayton, Vic. 3800, Australia.
C School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Melbourne, Vic. 3010, Australia.
D Present address: Australian Forest Research Company Pty Ltd, Wheelers Hill, Vic. 3150, Australia.
E Present address: Arch Wood Protection (Aust) Pty Ltd, Unit 3, Aerolink Business Park, Tullamarine, Vic. 3043, Australia.
F Present address: Biota Holdings Ltd, Notting Hill, Vic. 3168, Australia.
G Corresponding author. Email: peter.duggan@csiro.au
Australian Journal of Chemistry 64(11) 1417-1424 https://doi.org/10.1071/CH11284
Submitted: 11 July 2011 Accepted: 8 August 2011 Published: 16 November 2011
Abstract
The preparation of tetra-n-butylammonium spiroborates derived from the aliphatic α-hydroxy acids glycolic and (S)-(+)-mandelic acid, and the spiroborate mixed anhydrides derived from the dicarboxylic acids oxalic, malonic, succinic, and phthalic acid was investigated. The target ammonium spiroborates were obtained in pure form from glycolic, (S)-(+)-mandelic, and oxalic acids and were tested for their potential as wood preservatives. The spiroborates derived from glycolic acid and (S)-(+)-mandelic acid show promise and are worthy of further investigation. Useful information about the order of stability of the spiroborate mixed anhydrides derived from the dicarboxylic acids has been obtained and a new oxalato triborate related in structure to borax has been prepared and characterized by X-ray crystallography.
References
[1] D. N. Obanda, T. F. Shupe, H. M. Barnes, Bioresour. Technol. 2008, 99, 7312.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXms1yntrw%3D&md5=1ec99719a5cd084d1189ac165fcb2d83CAS |
[2] (a) M. Wrede, V. Ganza, G. Kannenberg, F. Rominger, B. F. Straub, Inorg. Chim. Acta 2011, 369, 71.Arylspiroborates have been the subject of two recent publications from other research groups; (a)
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXksV2rsb0%3D&md5=d5f20cd60cc70db35c121603488aa737CAS |
(b) C. M. Vogels, S. A. Westcott, Chem. Soc. Rev. 2011, 40, 1446.
| Crossref | GoogleScholarGoogle Scholar |
[3] J. M. Carr, P. J. Duggan, D. G. Humphrey, E. M. Tyndall, Aust. J. Chem. 2005, 58, 21.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlt1Gjtw%3D%3D&md5=fc0ea8fc84464e9e554e2a4fc41f2057CAS |
[4] J. M. Carr, P. J. Duggan, D. G. Humphrey, J. A. Platts, E. M. Tyndall, Aust. J. Chem. 2005, 58, 901.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlejsLrO&md5=540c8b54343b6733d286bb1efad32cfbCAS |
[5] J. M. Carr, P. J. Duggan, D. G. Humphrey, J. A. Platts, E. M. Tyndall, Aust. J. Chem. 2010, 63, 1423.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1aktL3O&md5=e39ab728906651accfac3f15562e6eacCAS |
[6] J. M. Carr, P. J. Duggan, D. G. Humphrey, J. A. Platts, E. M. Tyndall, Aust. J. Chem. 2011, 64, 495.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkvVCrs74%3D&md5=de4c07827771ce10e0984f94d6921a60CAS |
[7] T. A. Houston, B. L. Wilkinson, J. T. Blanchfield, Org. Lett. 2004, 6, 679.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVyltbc%3D&md5=faeb34b5f69e79c2e7525277f374aff0CAS |
[8] T. A. Houston, S. M. Levonis, M. J. Kiefel, Aust. J. Chem. 2007, 60, 811.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1yisLfO&md5=7873e0e603be7651231b8a2271ca6ef7CAS |
[9] H. Steinberg, Organoboron Chemistry 1964 (Interscience: New York, NY).
[10] M. Ue, K. Shima, S. Mori, Electrochim. Acta 1994, 39, 2751.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXksFCltbk%3D&md5=b48859b97bbfc5bfe645ef9d23b1aa71CAS |
[11] M. Bello-Ramírez, M. Rodríguez Martínez, A. Flores-Parra, Heteroatom Chem. 1993, 4, 613.
| Crossref | GoogleScholarGoogle Scholar |
[12] M. Bishop, S. Bott, A. Barron, J. Chem. Soc., Dalton Trans. 2000, 3100.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmt1Kntrk%3D&md5=e59f21c07ed9376281da3ac27194a600CAS |
[13] L. Babcock, R. Pizer, Inorg. Chem. 1983, 22, 174.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXitlSnsA%3D%3D&md5=7c8a6058a45d8ceb47c36a1f179fb3c3CAS |
[14] M. Van Duin, J. A. Peters, A. P. G. Kieboom, H. van Bekkum, Tetrahedron 1984, 40, 2901.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXlvF2jt78%3D&md5=a04c055a39086b7914c9da6301a720e1CAS |
[15] A. Rosenheim, H. Vermehren, Ber. Dtsch. Chem. Ges. 1924, 57, 1337.
[16] R. Pizer, P. J. Ricatto, Inorg. Chem. 1994, 33, 2402.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXjtVylt7s%3D&md5=841e0167a3abb62512578a41bcb93078CAS |
[17] C. Schreiner, M. Amereller, H. J. Gores, Chemistry 2009, 15, 2270.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjtFChsLk%3D&md5=fe04f57a01acdeacd0cc3159c5c99c28CAS |
[18] E. Bessler, J. Weidlein, Z. Naturforsch 1982, 37b, 1020.
| 1:CAS:528:DyaL38XltlOlurc%3D&md5=ff11f2416862041457a322f77dc6a24eCAS |
[19] I. I. Zviedre, S. V. Belyakov, Russ. J. Inorg. Chem. 2007, 52, 686.
| Crossref | GoogleScholarGoogle Scholar |
[20] J. Bassett, P. J. Matthews, J. Inorg. Nucl. Chem. 1978, 40, 987.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXnt1amtw%3D%3D&md5=aff62af6cbb6a0565597d43941ced821CAS |
[21] H. A. Levy, G. C. Lisensky, Acta Crystallogr. 1978, B34, 3502.
| 1:CAS:528:DyaE1MXks1yruw%3D%3D&md5=1cebbbb212e7604b1fd800cc9105b061CAS |
[22] G. Lorber, R. Pizer, Inorg. Chem. 1976, 15, 978.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28Xht1Sks7k%3D&md5=daec37accaaafbcfe498671253b086ecCAS |
[23] L. Babcock, R. Pizer, Inorg. Chem. 1980, 19, 56.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXhtVSgsr4%3D&md5=73d7abdd5d310cfcebb23d34276803c1CAS |
[24] S. Friedman, R. Pizer, J. Am. Chem. Soc. 1975, 97, 6059.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2MXlvFaitLc%3D&md5=440e676e0a537d392e498906cc45d891CAS |
[25] J. Boeseken, P. E. Verkade, Rec. Trav. Chim. 1916, 36, 167.
| 1:CAS:528:DyaC2sXhsValug%3D%3D&md5=0180caf2ca943d297981b4206bd5414aCAS |
[26] T. A. Houston, L. F. Bornaghi, S. M. Levonis, Aust. J. Chem. 2007, 60, 811.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1yisLfO&md5=7873e0e603be7651231b8a2271ca6ef7CAS |
[27] J. Frahn, J. Chromatogr. A 1984, 314, 167.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXhvVGisLc%3D&md5=b4ca2c214262580c1a9fff6054944eafCAS |
[28] S. M. Bachrach, J. Org. Chem. 2008, 73, 2466.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXitVansbc%3D&md5=44fbc64e9e32edc126c30589b5e1e04cCAS |
[29] Protocols for the Assessment of Wood Preservatives 1997 (Australasian Wood Preservation Committee: Melbourne).