Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

One-Pot Pathway: Fabricating Ordered Hollow Silica Spheres Using Sodium Silicate as the Precursor

Weiwei Wu A , Xinhua Yuan A , Shunsheng Cao A B C , Yi Ge B , Songjun Li B C , Zhiyuan Zhao A and Long Fang A
+ Author Affiliations
- Author Affiliations

A School of Materials Science and Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang 212013, P. R. China.

B Cranfield Health, Vincent Building, Cranfield University, Cranfield, Bedfordshire, MK43 0AL, UK.

C Corresponding authors. Email: sscaochem@hotmail.com, songjun.li@cranfield.ac.uk

Australian Journal of Chemistry 64(12) 1541-1546 https://doi.org/10.1071/CH11231
Submitted: 5 June 2011  Accepted: 1 September 2011   Published: 28 September 2011

Abstract

The preparation of hollow silica spheres via the sodium silicate route presents many advantages such as a low-cost silica source, and an environmentally friendly reaction system. Unfortunately, it is extremely hard to prepare the well-defined hollow silica spheres by using sodium silicate as the silica source owing to its rapid, disordered precipitation under the acid catalysis. As a result, we, in this paper, report a facile, economic, one-pot pathway for preparation of the ordered hollow silica spheres by employing a sodium silicate precursor. In this approach, the cationic polystyrene (CPS) templates can be first prepared via emulsifier-free emulsion polymerization by using the cationic monomer vinylbenzyltrimethylammonium chloride, then, the silica shells were attached on the surfaces of CPS particles via electrostatic interaction, finally CPS particles were in situ dissolved and removed by adding toluene to create ordered hollow silica spheres. Some modern techniques and instruments, including the transmission electron microscope, scanning electron microscopy, infrared spectroscopy, thermogravimetric analysis, and Brunauer-Emmett-Teller theory were employed to monitor and characterize the resulting hollow silica spheres.


References

[1]  O. Weichold, B. Tigges, M. Bertmer, M. Muller, J. Colloid. Interface Sci. 2008, 324, 105.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnsFagu7Y%3D&md5=161807b0b80a808fd432d32246dc6315CAS |

[2]  J. Yang, J. Lee, J. Kang, K. Lee, J. Suh, H. Yoon, Y. Huh, S. Haam, Langmuir 2008, 24, 3417.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXivV2gtrg%3D&md5=1a8946f126594562396da3ee1f8ca42aCAS |

[3]  S. H. Im, U. Jeong, Y. Xia, Nat. Mater. 2005, 4, 671.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  W. R. Zhao, H. R. Chen, Y. S. Li, L. Li, M. D. Lang, J. L. Shi, Adv. Funct. Mater. 2008, 18, 2780.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1Cht7rK&md5=8bf34b35d472c6c5d85d34d7cb32dd98CAS |

[5]  X. W. Lou, Y. Wang, C. Yuan, J. Y. Lee, L. A. Archer, Adv. Mater. 2006, 18, 2325.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVSlurnE&md5=483f84bd2415c842501c7d5e5ab03ea5CAS |

[6]  J. Gao, B. Zhang, X. Zhang, B. Xu, Angew. Chem. Int. Ed. 2006, 45, 1220.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhvFyjsr8%3D&md5=de9f49172ea8db6f009b5628e8aeff94CAS |

[7]  H. Ji, S. Wang, X. Yang, Polymer 2009, 50, 133.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXksFOktg%3D%3D&md5=5e023c2ba27d9c407a7248b8dc21bc2eCAS |

[8]  Y. Qi, K. Tang, S. Zeng, W. Zhou, Micropor. Mesopor. Mat. 2008, 114, 395.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXns1ahu7k%3D&md5=67d5b8fc83bbb84b1eee01c9d50647faCAS |

[9]  Y. Zhao, L. N. Lin, Y. Lu, S. F. Chen, L. A. Dong, S. H. Yu, Adv. Mater. 2010, 22, 5255.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFClu77L&md5=7563def869aa467d73a8519b11b4e136CAS |

[10]  Y. X. Li, Z. Q. Wang, Z. Huang, Y. F. Pan, G. Xue, J. Mater. Chem. 2010, 20, 5516.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnslyqtb0%3D&md5=a7bb4fdc32be062eb2336df3d267f5b0CAS |

[11]  A. Melvin, R. Vijay, V. R. Chaudhari, B. Gupta, R. Prakash, S. Haram, G. Baskar, D. Khushalani, J. Colloid Interface Sci. 2010, 346, 265.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXltFCntbc%3D&md5=f83eb689392707fe1cd209bf8511aaa7CAS |

[12]  M. Chen, L. Wu, S. Zhou, B. You, Adv. Mater. 2006, 18, 801.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjsV2isro%3D&md5=fdc0c712ab0d5fe9b908aeec222f91b9CAS |

[13]  J. Yang, J. Peng, Q. Zhang, F. Peng, H. Wang, H. Yu, Angew. Chem. Int. Ed. 2009, 48, 3991.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmtVKmtr0%3D&md5=accd18d9c1d2d54611c277cabfcc1c32CAS |

[14]  X. Huang, H. Zhang, C. Guo, Z. Zhou, N. Zheng, Angew. Chem. Int. Ed. 2009, 48, 4808.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXntlOit74%3D&md5=582c3fd608d59ed75cf52a450278b529CAS |

[15]  S. Cao, X. Jin, X. Yuan, W. Wu, J. Hu, W. Sheng, J. Polym. Sci. A Polym. Chem. 2010, 48, 1332.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhvFams7Y%3D&md5=cabb8d1e18e6b41d060d654590b674e2CAS |

[16]  C. Y. Jung, J. S. Kim, T. S. Chang, S. T. Kim, H. J. Lim, S. M. Koo, Langmuir 2010, 26, 5456.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjtlajsr8%3D&md5=250a9707712aea16ca79d2e54a60e320CAS |

[17]  Y. Wang, G. Wang, H. Wang, W. Cai, L. Zhang, Chem. Commun. 2008, 6555.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVKntbzJ&md5=81f1a4948d5f4532189b78f501d582c3CAS |

[18]  L. Elimelech, D. Avnir, Chem. Mater. 2008, 20, 2224.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXislemsLg%3D&md5=be8c930fc88f4fbc6a2d33a075d52538CAS |

[19]  L. Sierra, J. L. Guth, Micropor. Mesopor. Mat. 1999, 27, 243.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXit1Ogs7s%3D&md5=e4d5eb2b189c062267d66d75e870d6f0CAS |

[20]  C. Boissière, A. Larbot, E. Prouzet, Chem. Mater. 2000, 12, 1937.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  K. Kosuge, N. Kikukawa, M. Takemori, Chem. Mater. 2004, 16, 4181.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnsVOnsbs%3D&md5=49c8b29e85fc03ea518ffca3d773c62eCAS |

[22]  S. H. Joo, R. Ryoo, M. Kruk, M. Jaroniec, J. Phys. Chem. B 2002, 106, 4640.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XisFartro%3D&md5=1731457987350f0ddac18d4fa99cae15CAS |

[23]  K. Kosuge, T. Sato, N. Kikukawa, M. Takemori, Chem. Mater. 2004, 16, 899.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXps1egug%3D%3D&md5=48bfacee82c4d9ba98c7156cd0119f60CAS |

[24]  K. Hossain, A. Sayari, Micropor. Mesopor. Mat. 2008, 114, 387.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXns1ahu7g%3D&md5=0d3d0478ef41f5985886047a753f5a5dCAS |

[25]  M. Feyen, C. Wwidenthaler, F. Schuth, A. H. Lu, J. Am. Chem. Soc. 2010, 132, 6791.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXltFChsbg%3D&md5=afcd1995cc9b58bf50ecc497b2135782CAS |

[26]  T. W. Kim, P. W. Chung, V. S. Y. Lin, Chem. Mater. 2010, 22, 5093.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpslWjsL0%3D&md5=ffced1bb891077fa5a9df91d501389d8CAS |

[27]  L. Zhang, M. Dacunzi, M. Kappl, G. K. Auernhammer, D. Vollmer, C. M. Van Kats, A. Van Blaaderen, Langmuir 2009, 25, 2711.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVChu7o%3D&md5=076b72dc3f0d20c8c3053b7d665049e8CAS |

[28]  I. Mukherjee, A. Mylonakis, Y. Guo, S. P. Samuel, S. X. Li, R. Y. Wei, A. Kojtari, Y. Wei, Micropor. Mesopor. Mat. 2009, 122, 168.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXkslygsLs%3D&md5=aa5ae1975fcf042ce7ae247254dff389CAS |

[29]  S. J. Li, S. Gong, Adv. Funct. Mater. 2009, 19, 2601.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVWit7rO&md5=04e69ff3816fc6f9b90db49b51d23bb7CAS |

[30]  W. Li, S. J. Li, Adv. Polym. Sci. 2007, 206, 191.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXksVWns70%3D&md5=edf5bab8fc0e7626980121b2364da8c0CAS |

[31]  E. J. Cho, S. Jung, K. Lee, H. J. Lee, K. C. Nam, H. J. Bae, Chem. Commun. 2010, 46, 6557.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVKltLjF&md5=e6060d129e3b9f0fff4f9bc25638d05dCAS |

[32]  S. Cao, B. Liu, Macromol. Biosci. 2009, 9, 361.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlt1Ohs7Y%3D&md5=2be7ad30985ad362b7e49077e665c713CAS |

[33]  M. Tsai, P. Y. Huang, C. Yang, J. Nanopart. Res. 2006, 8, 943.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1elt7rO&md5=df41691cc7ad56a1cac00d7f58216cf6CAS |

[34]  A. Yoshida, Silica Nucleation, Polymerization, Growth Preparation of Monodispersed Sol: The Colloidal Chemistry of Silica. Advance in Chemistry Series 234, 1994, pp. 51–62 (Ed. H. E. Bergna) (American Chemical Society: Washington, D.C., USA).

[35]  S. Cao, B. Liu, X. Deng, R. Luo, H. Chen, Polym. Int. 2007, 56, 357.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXitVKrtbw%3D&md5=82f91fc9d83f29878740cc95da604a55CAS |

[36]  L. Li, J. Ding, J. Xue, Chem. Mater. 2009, 21, 3629.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXos12mu7o%3D&md5=c6e37be7e93805683bfdac55dbc39412CAS |

[37]  J. Yang, J. U. Lind, W. C. Trogler, Chem. Mater. 2008, 20, 2875.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXksl2gur0%3D&md5=c647b4eb46a4925c76b37076a9c5459eCAS |

[38]  T. Zhang, Q. Zhang, J. Ge, J. Goebl, M. Sun, Y. Yan, Y. Liu, C. Chang, J. Guo, Y. Yin, J. Phys. Chem. C 2009, 113, 3168.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1Ghu7g%3D&md5=f77599f46f4a1bae0c9106e3b9ccc798CAS |

[39]  X. W. Lou, L. A. Archer, Z. Yang, Adv. Mater. 2008, 20, 3987.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVartbnK&md5=f33838ba4b7c9ed265521857949443efCAS |