Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

A Density Functional Theory Investigation of the Bimetallic Clusters Nb2Rh and NbRh2 and the Complexes They Form with CO

Alexander S. Gentleman A , Matthew A. Addicoat B and Gregory F. Metha A C
+ Author Affiliations
- Author Affiliations

A Department of Chemistry, The University of Adelaide, Adelaide, SA 5005, Australia.

B Department of Chemistry, Nagoya University, Nagoya 464-8602, Japan.

C Corresponding author. Email: greg.metha@adelaide.edu.au

Aust. J. Chem. 64(12) 1554-1559 https://doi.org/10.1071/CH11179
Submitted: 4 May 2011  Accepted: 13 September 2011   Published: 21 October 2011

Abstract

The interaction of CO with the bimetallic clusters Nb2Rh and NbRh2 has been theoretically investigated using density functional theory. The lowest energy structure of Nb2Rh is found to be a doublet Cs scalene triangle and the global minimum of Nb2Rh–CO is a dissociative structure with C1 symmetry. The lowest energy minimum of NbRh2 is found to be a doublet C2v isosceles triangle and the global minimum of NbRh2–CO is a dissociative structure with Cs symmetry. In comparison with our previous work on Rh3 + CO (J. Comp. Chem., 2008, 29, 1497), these results show that substitution of a single Rh atom with Nb is sufficient to dissociate CO.


References

[1]  J. A. Rodriguez, Surf. Sci. Rep. 1996, 24, 223.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XlsFKqsL8%3D&md5=30f5e43314026989e0e720a04c55f14aCAS |

[2]  E. E. Karagiannis, C. E. Kefalidis, I. Petrakopoulou, C. A. Tsipis, J. Comput. Chem. 2011, 32, 1241.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjsF2is7w%3D&md5=c92b5281c1c7c0aa76d12129407cff72CAS |

[3]  D. A. Kilimis, D. G. Papageorgiou, Eur. Phys. J. D 2010, 56, 189.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXptVSqsg%3D%3D&md5=737cbef729c38716662928ac332e3becCAS |

[4]  D. A. Kilimis, D. G. Papageorgiou, J. Mol. Struct. THEOCHEM 2010, 939, 112.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFOrtbnN&md5=e37a2da7ef12fc1933cd622f7ef775e4CAS |

[5]  D. N. Garbounis, A. C. Tsipis, C. A. Tsipis, J. Comput. Chem. 2010, 31, 2836.
         | 1:CAS:528:DC%2BC3cXhtlyqtLfP&md5=77e563ee7d7800b45da24fd702127632CAS |

[6]  A. Radillo-Diaz, Y. Coronado, L. A. Perez, I. L. Garzon, Eur. Phys. J. D 2009, 52, 127.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXkvFGlsLw%3D&md5=6e7d3ae157fae194b05dadf7ae17497cCAS |

[7]  M. Harb, F. Rabilloud, D. Simon, J. Chem. Phys. 2009, 131, 174302.
         | Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1Mjks1Snug%3D%3D&md5=7535a6351ad58ea3dc9da5f44ceb3e36CAS |

[8]  N. S. Venkataramanan, J. Mol. Struct. THEOCHEM 2008, 856, 9.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXkvVGrt7w%3D&md5=098755c008ad13003f1fb1be5d227da7CAS |

[9]  M. B. Knickelbein, Phys. Rev. B 2007, 75, 014401.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  G. F. Zhao, Z. Zeng, J. Chem. Phys. 2006, 125, 014303.
         | Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD28vktFajug%3D%3D&md5=26f71572f12cfe5ac10b534311b36b6fCAS |

[11]  W. Q. Tian, M. Ge, F. Gu, Y. Aoki, J. Phys. Chem. A 2005, 109, 9860.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtV2jsb%2FO&md5=73c71aaedf8dad240b59b25946fb86baCAS |

[12]  Q. L. Lu, L. Z. Zhu, L. Ma, G. H. Wang, Chem. Phys. Lett. 2005, 407, 176.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjs1GjtLo%3D&md5=5dace1426543a9b05e411777eb9f4012CAS |

[13]  I. Efremenko, M. Sheintuch, Chem. Phys. Lett. 2005, 401, 232.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtFSnsb7K&md5=58ed79347c5ecd84ddbbe611fc9052faCAS |

[14]  P. Weis, O. Welz, E. Vollmer, M. M. Kappes, J. Chem. Phys. 2004, 120, 677.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnsVKm&md5=bb63325dc2cd5d977d969458858aa899CAS |

[15]  A. Pramann, K. Koyasu, A. Nakajima, K. Kaya, Int. J. Mass Spectrom. 2003, 229, 77.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXntFSlsrs%3D&md5=6395416dadde9b6b21b7eb6266fb468dCAS |

[16]  A. Pramann, K. Koyasu, A. Nakajima, K. Kaya, J. Phys. Chem. A 2002, 106, 2483.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhsVCqtbw%3D&md5=54931e698be74396c0a4a98c95822fefCAS |

[17]  K. Koyasu, M. Mitsui, A. Nakajima, K. Kaya, Chem. Phys. Lett. 2002, 358, 224.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XksVemsbs%3D&md5=6e0c8f4ed12321fafb1afe08f17a0fbbCAS |

[18]  V. Bonačić-Koutecký, J. Burda, R. Mitric, M. F. Ge, G. Zampella, P. Fantucci, J. Chem. Phys. 2002, 117, 3120.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  Y. Negishi, Y. Nakamura, A. Nakajima, K. Kaya, J. Chem. Phys. 2001, 115, 3657.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlvVehsLk%3D&md5=9b962a2b4218e576024e99201782e40cCAS |

[20]  P. A. Derosa, J. M. Seminario, P. B. Balbuena, J. Phys. Chem. A 2001, 105, 7917.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlt1Ortb8%3D&md5=4a0a2ab30c580b953a7af0e443e2d868CAS |

[21]  W. Bouwen, F. Vanhoutte, F. Despa, S. Bouckaert, S. Neukermans, L. T. Kuhn, H. Weidele, P. Lievens, R. E. Silverans, Chem. Phys. Lett. 1999, 314, 227.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXnsl2ku7w%3D&md5=d46458e53c3f9e4b713e2d7890074db0CAS |

[22]  J. L. Rousset, A. M. Cadrot, F. J. C. S. Aires, A. Renouprez, P. Melinon, A. Perez, M. Pellarin, J. L. Vialle, M. Broyer, J. Chem. Phys. 1995, 102, 8574.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXlvFegtb4%3D&md5=7f5677f206e37caddc5df7b5ebb0e949CAS |

[23]  K. Hoshino, T. Naganuma, K. Watanabe, Y. Konishi, A. Nakajima, K. Kaya, Chem. Phys. Lett. 1995, 239, 369.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXmt1Okur8%3D&md5=602ae69ca8bfd1fcae20873a826f6035CAS |

[24]  Y. X. Wang, Y. J. Mi, N. Redmon, J. Holiday, J. Phys. Chem. C 2010, 114, 317.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFCgu7nJ&md5=38c0f8a52f1ecd22891703fe356e0da8CAS |

[25]  F. Wang, D. J. Zhang, Y. Ding, J. Phys. Chem. C 2010, 114, 14076.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpslWiurw%3D&md5=71eb86fa6c7cd8ec09c518b4b8ff9f5bCAS |

[26]  J. Du, G. Wu, J. Wang, J. Phys. Chem. A 2010, 114, 10508.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFelsbrK&md5=785e6f9409387182e1081c6d8ec0a8f6CAS |

[27]  C. Song, Q. Ge, L. Wang, J. Phys. Chem. B 2005, 109, 22341.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFOisLjP&md5=1fd756ca43c6eaaf41debc6d477cd239CAS |

[28]  J. M. Seminario, L. A. Agapito, L. Yan, P. B. Balbuena, Chem. Phys. Lett. 2005, 410, 275.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlvFeju7c%3D&md5=3f8c37056608eb03682e3c09fbef956eCAS |

[29]  P. B. Balbuena, D. Altomare, N. Vadlamani, S. Bingi, L. A. Agapito, J. M. J. Seminario, Phys. Chem. A 2004, 2004, 30.

[30]  A. Nakajima, T. Kishi, T. Sugioka, Y. Sone, K. Kaya, J. Phys. Chem. 1991, 95, 6833.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXls1Oms70%3D&md5=e2ae1c3c24177b37ae275758ede076d7CAS |

[31]  A. Fielicke, G. von Helden, G. Meijer, D. B. Pedersen, B. Simard, D. M. Rayner, J. Phys. Chem. B 2004, 108, 14591.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXks1agtb8%3D&md5=7f6717ac86449575cf241545de5d59b6CAS |

[32]  A. Fielicke, G. von Helden, G. Meijer, B. Simard, S. Denommee, D. M. Rayner, J. Am. Chem. Soc. 2003, 125, 11184.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmsVynsbc%3D&md5=4dbb681975a8e7805d74dc6a590f271eCAS |

[33]  D. B. Pedersen, D. M. Rayner, B. Simard, M. A. Addicoat, M. A. Buntine, G. F. Metha, A. Fielicke, J. Phys. Chem. A 2004, 108, 964.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjslWntA%3D%3D&md5=601ec6e348c5dc458f72c9422f07ea78CAS |

[34]  K. P. Huber, G. Herzberg, Constants of Diatomic Molecules 1979 (Van Nostrand Reinhold: New York, NY).

[35]  M. A. Addicoat, M. A. Buntine, B. Yates, G. F. Metha, J. Comput. Chem. 2008, 29, 1497.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmsFOhtrg%3D&md5=056ff099791144d409e27797ce88490aCAS |

[36]  M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr, T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian 03 2004 (Gaussian, Inc.: Wallingford, CT).

[37]  A. D. Becke, J. Chem. Phys. 1993, 98, 5648.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXisVWgtrw%3D&md5=ee5af041032bb2825357f4a4a02b5705CAS |

[38]  J. P. Perdew, Phys. Rev. B 1986, 33, 8822.
         | Crossref | GoogleScholarGoogle Scholar |

[39]  T. H. Dunning, Jr, P. J. Hay, in Modern Theoretical Chemistry 1976, Vol. 3, pp. 1–28 (Ed. H. F. Schaefer III) (Plenum: New York, NY).

[40]  D. Andrae, U. Haussermann, M. Dolg, H. Stoll, H. Preuss, Theor. Chim. Acta 1990, 77, 123.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXkt12ntLo%3D&md5=de6af15415f87cc824d0f3390d824013CAS |

[41]  A. Bergner, M. Dolg, W. Kuechle, H. Stoll, H. Preuss, Mol. Phys. 1993, 80, 1431.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXhsVCmsLo%3D&md5=4d934ef77ddf36e490f8d0495059e845CAS |

[42]  G. Igel-Mann, H. Stoll, H. Preuss, Mol. Phys. 1988, 65, 1321.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXmtVaitL8%3D&md5=fc35259d9e2d203af45c05de8320ed09CAS |

[43]  M. A. Addicoat, G. F. Metha, J. Comput. Chem. 2009, 30, 57.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXosVWk&md5=9aad1ae947e59f902731456afce53d4dCAS |

[44]  D. Lide, in CRC Handbook of Chemistry and Physics, 89th edn 2008 (Chemical Rubber Company: Boca Raton, FL).

[45]  G. Blyholder, J. Phys. Chem. 1964, 68, 2772.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2cXkslarurk%3D&md5=5e74386080330f3646b5a4cc43df2655CAS |

[46]  On repeating the NBO analysis for the capture species of Nb3CO and Rh3CO (as shown in Table 1), the energies of the CO π* orbital in question were found to be slightly different from the values in ref. [35], although the ν(CO) values were calculated to be identical.