MgII, CaII, and CoII Metal-Organic Framework Materials with [Si(p-C6H4CO2)3(p-C6H4CO2H)]3– Struts
Robert P. Davies A B , Paul D. Lickiss A B , Karen Robertson A and Andrew J. P. White AA Department of Chemistry, Imperial College London, South Kensington, London, SW7 2AZ, UK.
B Corresponding authors. Email: r.davies@imperial.ac.uk; p.lickiss@imperial.ac.uk
Australian Journal of Chemistry 64(9) 1239-1246 https://doi.org/10.1071/CH11155
Submitted: 20 April 2011 Accepted: 16 June 2011 Published: 16 September 2011
Abstract
Three new metal-organic framework materials [Mg3(LH)2(EtOH)2(H2O)]·(EtOH)4.5(H2O)0.25 (IMP-13Mg), [Co3(LH)2(EtOH)2(H2O)]·(EtOH)3 (IMP-13Co), and [Ca3(LH)2(EtOH)4]·(EtOH)6 (IMP-14) have been prepared from the treatment of silanetetrabenzoic acid (L-H4) with MgII, CoII, and CaII salts respectively. In all cases the silanetetrabenzoic acid has been triply deprotonated and the resultant carboxylate groups assemble with trinuclear metal-based nodes to give (3,6)-connected kgd-type two-dimensional layers. These layers are then extended into the third dimension by coordination of the metal nodes by carboxylic acid groups in adjacent layers. In the case of IMP-13Mg/Co, only alternate L-H connectors and metal nodes are involved in these interlayer interactions, leaving some acid groups free within the structure. However, in IMP-14 all L-H connectors and metal nodes participate in interlayer bonding.
References
[1] S. Q. Ma, H. C. Zhou, Chem. Commun. 2010, 46, 44.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFektrbI&md5=93866b9c46a3010d05819393b0a940baCAS |
[2] J. R. Li, R. J. Kuppler, H. C. Zhou, Chem. Soc. Rev. 2009, 38, 1477.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXkvVamurY%3D&md5=ad7cb91ddf422307aedf948a53dbc958CAS |
[3] S. Horike, S. Shimomura, S. Kitagawa, Nat. Chem. 2009, 1, 695.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVGnt7vK&md5=b2d120913773ddcf849707b2e88b822bCAS |
[4] S. Kitagawa, R. Matsuda, Coord. Chem. Rev. 2007, 251, 2490.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFKhs77L&md5=7fd9e4ea50b5a855629405327edc432aCAS |
[5] D. Maspoch, D. Ruiz-Molina, J. Veciana, Chem. Soc. Rev. 2007, 36, 770.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXkslClt7g%3D&md5=37ed625b56ccfd8dfc6b145bfc91dd7fCAS |
[6] G. Ferey, Dalton Trans. 2009, 4400.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXms1Oitbs%3D&md5=88820353862515668d58b099492fc8acCAS |
[7] K. M. Thomas, Dalton Trans. 2009, 1487.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhvFGqur0%3D&md5=ec0f1e5999d1f497bba8a1e7d1e7280dCAS |
[8] L. J. Murray, M. Dinca, J. R. Long, Chem. Soc. Rev. 2009, 38, 1294.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXkvVamuro%3D&md5=de9e5111d9c2308f879cd4329e14cd84CAS |
[9] R. J. Kuppler, D. J. Timmons, Q. R. Fang, J. R. Li, T. A. Makal, M. D. Young, D. Q. Yuan, D. Zhao, W. J. Zhuang, H. C. Zhou, Coord. Chem. Rev. 2009, 253, 3042.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlagt7zM&md5=36226e0c5c8dec9c0fe1a742af3d7ce2CAS |
[10] M. Eddaoudi, D. B. Moler, H. L. Li, B. L. Chen, T. M. Reineke, M. O’Keeffe, O. M. Yaghi, Acc. Chem. Res. 2001, 34, 319.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhtFymsL0%3D&md5=a362eea56f050efe712333eb1256e168CAS |
[11] D. J. Tranchemontagne, J. L. Mendoza-Cortes, M. O’Keeffe, O. M. Yaghi, Chem. Soc. Rev. 2009, 38, 1257.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXkvValsr8%3D&md5=2035892dd53b5d16c173cf2bb10bba0eCAS |
[12] S. L. Qiu, G. S. Zhu, Coord. Chem. Rev. 2009, 253, 2891.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlagt77J&md5=a8e1ab033bce6d72cdcaecb7f2140552CAS |
[13] R. P. Davies, R. J. Less, P. D. Lickiss, K. Robertson, A. J. P. White, Inorg. Chem. 2008, 47, 9958.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFygt7fI&md5=bf436f25145c6d77f7da4493d43e1ba9CAS |
[14] R. P. Davies, R. Less, P. D. Lickiss, K. Robertson, A. J. P. White, Cryst. Growth Des. 2010, 10, 4571.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtV2kt7jK&md5=2c41af3eb7fa66cffdfb343b4241a5f3CAS |
[15] J. B. Lambert, Z. Q. Liu, C. Q. Liu, Organometallics 2008, 27, 1464.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXivVSrs7c%3D&md5=844398d508db2460fede61327d643505CAS |
[16] S. E. Wenzel, M. Fischer, F. Hoffmann, M. Froba, Inorg. Chem. 2009, 48, 6559.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXntleltb4%3D&md5=e76947f86423d5fb8c58031c055b059fCAS |
[17] J. Kim, B. L. Chen, T. M. Reineke, H. L. Li, M. Eddaoudi, D. B. Moler, M. O’Keeffe, O. M. Yaghi, J. Am. Chem. Soc. 2001, 123, 8239.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXls1Okt7w%3D&md5=b1374bb64870aa568de221481d396f0cCAS |
[18] L. Q. Ma, A. Jin, Z. G. Xie, W. B. Lin, Angew. Chem. Int. Ed. Engl. 2009, 48, 9905.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsF2hsrjK&md5=81657b38e5eaf3cd0e8472a8de3b32a8CAS |
[19] H. Chun, D. Kim, D. N. Dybtsev, K. Kim, Angew. Chem. Int. Ed. Engl. 2004, 43, 971.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhslKlu7w%3D&md5=b892f8f97fa8eff97ccfdbf15ea3a1e6CAS |
[20] Y. E. Cheon, M. P. Suh, Chem. Commun. 2009, 2296.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXkslGktb8%3D&md5=d46cb9121cf7a46526d14f5db5d7d60dCAS |
[21] Y. E. Cheon, M. P. Suh, Chem. – Eur. J. 2008, 14, 3961.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmtVynu78%3D&md5=e66386e4ad833f075b0372dabf8c8ca0CAS |
[22] B. L. Chen, M. Eddaoudi, T. M. Reineke, J. W. Kampf, M. O’Keeffe, O. M. Yaghi, J. Am. Chem. Soc. 2000, 122, 11559.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXnslyjur4%3D&md5=dececac83eb3bd7758bbcfb9221fd535CAS |
[23] N. L. Rosi, J. Kim, M. Eddaoudi, B. L. Chen, M. O’Keeffe, O. M. Yaghi, J. Am. Chem. Soc. 2005, 127, 1504.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjtFGmtg%3D%3D&md5=52c4e2003ef37a92b63933c7f174a295CAS |
[24] R. P. Davies, R. J. Less, P. D. Lickiss, A. J. P. White, Dalton Trans. 2007, 2528.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmtlGlu7o%3D&md5=f1ebfc2e007558f0bf96b8e52664e55dCAS |
[25] J. H. Fournier, X. Wang, J. D. Wuest, Can. J. Chem. Rev. Can. Chim. 2003, 81, 376.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlt1Krsrs%3D&md5=38d61fa4240d327c0cd7b444698dd5d1CAS |
[26] A. L. Spek, J. Appl. Cryst. 2008, 2003, 7.
[27] A. E. Platero-Prats, V. A. de la Peña-O’Shea, N. Snejko, Á. Monge, E. Gutiérrez-Puebla, Chem. – Eur. J. 2010, 16, 11632.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVSrtb7I&md5=5a19f174fbaa23285a9c40b8e1a47d64CAS |
[28] C. Volkringer, T. Loiseau, G. Férey, J. E. Warren, D. S. Wragg, R. E. Morris, Solid State Sci. 2007, 9, 455.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnsVWjsbs%3D&md5=dd6503a178fa5f0dfc1dab60cf4adac2CAS |
[29] C. Volkringer, J. Marrot, G. Férey, T. Loiseau, Cryst. Growth Des. 2008, 8, 685.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVehur7O&md5=d7100073501c9ae4e6ce119568c52a36CAS |
[30] C. A. Williams, A. J. Blake, C. Wilson, P. Hubberstey, M. Schröder, Cryst. Growth Des. 2008, 8, 911.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVKlsro%3D&md5=8850134015b6e855180a9f515ed05b1fCAS |