Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

Functionalized Nanoporous Membranes from Reactive Triblock Polymers

Mark A. Amendt A , Monique Roerdink A , Sarah Moench A , William A. Phillip B , Edward L. Cussler B and Marc A. Hillmyer A C
+ Author Affiliations
- Author Affiliations

A Department of Chemistry University of Minnesota, Minneapolis, Minnesota 55455, USA.

B Department of Chemical Engineering and Materials Science University of Minnesota, Minneapolis, Minnesota 55455, USA.

C Corresponding author. Email: hillmyer@umn.edu

Australian Journal of Chemistry 64(8) 1074-1082 https://doi.org/10.1071/CH11130
Submitted: 2 April 2011  Accepted: 21 June 2011   Published: 19 August 2011

Abstract

Hydrophilic and stimuli responsive nanoporous poly(dicyclopentadiene) membranes are prepared using reactive ABC triblock polymers consisting of a chemically etchable ‘A’ block, poly(lactide), various functionalized ‘B’ blocks, and a metathesis-reactive ‘C’ block, poly(styrene-stat-norbornenylethylstyrene).A membrane with a bicontinuous structure is formed by reaction-induced phase separation during the metathesis crosslinking of dicyclopentadiene in the presence of the ABC triblock polymers. Selective etching of the poly(lactide) block exposed the functionality contained in the B block. Hydrophilic membranes are prepared from a triblock polymer with a poly(N,N-dimethylacrylamide) B midblock as evidenced by static contact angle measurements in comparison to AC diblock templated membranes. Temperature responsive membranes are prepared from a triblock polymer with a poly(N-isopropylacrylamide) B block.


References

[1]  F. S. Bates, Science 1991, 251, 898.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXhsVCgsrk%3D&md5=6c626f319333a42d74d2a77d8ec423a3CAS |

[2]  M. A. Hillmyer, Adv. Polym. Sci. 2005, 190, 137.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XntVWltg%3D%3D&md5=d7be054597d62f8e9e66e49de75fcb64CAS |

[3]  D. A. Olson, L. Chen, M. A. Hillmyer, Chem. Mater. 2008, 20, 869.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlGntrfP&md5=c9e82bde4d8cf77c948ccfcff39ee4a4CAS |

[4]  M. J. Fasolka, A. M. Mayes, Annu. Rev. Mater. Res. 2001, 31, 323.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmsFGqsbs%3D&md5=ac1546da699ab8d266a646b62533ad02CAS |

[5]  C. J. Hawker, T. P. Russell, MRS Bull. 2005, 30, 952.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhvFemsg%3D%3D&md5=3a8c49132d3aefa1fa52328883f2497aCAS |

[6]  W. A. Phillip, J. Rzayev, M. A. Hillmyer, E. L. Cussler, J. Membr. Sci. 2006, 286, 144.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1Kkur3L&md5=0f9e58e9202eae5c2767baacb2fe473fCAS |

[7]  E. A. Jackson, M. A. Hillmyer, ACS Nano 2010, 4, 3548.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXptFOrsLw%3D&md5=6ed226c2d894cd6c49fb99f8bbacd15eCAS |

[8]  G. Liu, J. Ding, T. Hashimoto, K. Kimishima, F. M. Winnik, S. Nigam, Chem. Mater. 1999, 11, 2233.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXksVWkt7g%3D&md5=840d529498141cb8868fbefbacb43879CAS |

[9]  D. T. Cooney, M. A. Hillmyer, E. L. Cussler, G. D. Moggridge, Crystallogr. Rev. 2006, 12, 13.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVequrzM&md5=6f0facd79e3670dec29b9451e94fe17cCAS |

[10]  K. Peinemann, V. Abetz, P. F. W. Simon, Nat. Mater. 2007, 6, 992.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlOmtL3F&md5=cacf6cd32f7389783c0e9f4a704ea257CAS |

[11]  S. Y. Yang, I. Ryu, H. Y. Kim, J. K. Kim, S. K. Jang, T. P. Russell, Adv. Mater. 2006, 18, 709.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjsV2juro%3D&md5=147b24e22deab559eb019911c1981a0dCAS |

[12]  E. E. Nuxoll, M. A. Hillmyer, R. Wang, C. Leighton, R. A. Siegel, ACS Appl. Mater. Interfaces 2009, 1, 888.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjvFKkurY%3D&md5=1a64742dd4f77d9c6931684fe09a8c5eCAS |

[13]  K. A. Koppi, M. Tirrell, F. S. Bates, Phys. Rev. Lett. 1993, 70, 1449.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXhs12qsb8%3D&md5=44d3e3b4ba5f39711096eba59e23fcb8CAS |

[14]  H. H. Winter, D. B. Scott, W. Gronski, S. Okamoto, T. Hashimoto, Macromolecules 1993, 26, 7236.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXmslaiur4%3D&md5=b88e58b2fac796a5fe69c456df652164CAS |

[15]  A. S. Zalusky, R. Olayo-Valles, J. H. Wolf, M. A. Hillmyer, J. Am. Chem. Soc. 2002, 124, 12761.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XnsFWmtbg%3D&md5=64936206a944e03fc20e09ec7f605c0cCAS |

[16]  T. L. Morkved, M. Lu, A. M. Urbas, E. E. Ehrichs, H. M. Jaeger, P. Mansky, T. P. Russell, Science 1996, 273, 931.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XltVCqu7g%3D&md5=a09684620b5f073bc880b1362179b0f1CAS |

[17]  T. Thurn-Albrecht, J. Schotter, G. A. Kastle, N. Emley, T. Shibauchi, L. Krusin-Elbaum, K. Guarini, C. T. Black, M. T. Tuominen, T. P. Russell, Science 2000, 290, 2126.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXptVyis7k%3D&md5=e8900436875505f935a5e78f859bc83eCAS |

[18]  G. Kim, M. Libera, Macromolecules 1998, 31, 2569.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXislSgsbc%3D&md5=cb7dc7a9708ad5e1b44d07e3bd7f5cb0CAS |

[19]  K. Fukunaga, H. Elbs, R. Magerle, G. Krausch, Macromolecules 2000, 33, 947.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXksVSiug%3D%3D&md5=bee0f11c56827aeba359fba5b11dcbdcCAS |

[20]  J. Hahm, S. J. Sibener, Langmuir 2000, 16, 4766.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXitl2jtL0%3D&md5=239a16f6fea56f40299ec0a278806f40CAS |

[21]  S. Kim, M. Misner, T. Xu, M. Kimura, T. P. Russell, Adv. Mater. 2004, 16, 226.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhs1Kntrs%3D&md5=f3567330309355e0182fd5fe38d60558CAS |

[22]  P. Mansky, Y. Liu, E. Huang, T. P. Russell, C. Hawker, Science 1997, 275, 1458.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhslGls7c%3D&md5=357708c793c56c6ce6d7b510da1c0a11CAS |

[23]  E. Huang, L. Rockford, T. P. Russell, C. J. Hawker, Nature 1998, 395, 757.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmvFOms70%3D&md5=3ae38bd18444c0f763251ae6c0c02da6CAS |

[24]  S. O. Kim, H. H. Solak, M. P. Stoykovich, N. J. Ferrier, J. J. de Pablo, P. F. Nealey, Nature 2003, 424, 411.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXls1aqsb4%3D&md5=9ba5cad41afeb7a39b78ce222cf7ce81CAS |

[25]  H. Uehara, T. Yoshida, M. Kakiage, T. Yamanobe, T. Komoto, K. Nomura, K. Nakajima, M. Matsuda, Macromolecules 2006, 39, 3971.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XksFWiurs%3D&md5=d8a0ae33f7e50d4dd61b7d9c02d9687bCAS |

[26]  H. Uehara, M. Kakiage, M. Sekiya, D. Sakuma, T. Yamonobe, N. Takano, A. Barraud, E. Meurville, P. Ryser, ACS Nano 2009, 3, 924.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjvVOks7g%3D&md5=ecf34159dcef2b929eb6cf3b549d27ceCAS |

[27]  S. Y. Yang, J. Park, J. Yoon, M. Ree, S. K. Jang, J. K. Kim, Adv. Funct. Mater. 2008, 18, 1371.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmslKrt7k%3D&md5=9c7cde91a9370ae1190001b97b4f45deCAS |

[28]  L. Chen, W. A. Phillip, E. L. Cussler, M. A. Hillmyer, J. Am. Chem. Soc. 2007, 129, 13786.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFyhu73N&md5=98ce36652b310f0916495b37139eb64eCAS |

[29]  W. A. Phillip, M. Amendt, B. O’Neill, L. Chen, M. A. Hillmyer, E. L. Cussler, ACS Appl. Mater. Interfaces 2009, 1, 472.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1agsLY%3D&md5=e6895c8a64d55db4a37c906ba077db15CAS |

[30]  D. Rana, T. Matsuura, Chem. Rev. 2010, 110, 2448.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXptl2lsQ%3D%3D&md5=d390a7f21ff0f187e98b09a02e4bcdbeCAS |

[31]  E. Ostuni, R. G. Chapman, R. E. Holmlin, S. Takayama, G. M. Whitesides, Langmuir 2001, 17, 5605.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlsFWgsrk%3D&md5=b724738386cdd58b97c5fdf24501ea71CAS |

[32]  M. Ulbricht, Polymer 2006, 47, 2217.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XislWls7w%3D&md5=4b372d9b658882889f6d27425c2521ceCAS |

[33]  G. Liu, J. Ding, S. Stewart, Angew. Chem. Int. Ed. 1999, 38, 835.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXisVeksL4%3D&md5=efc23f5ddfb16648757f5106a75f72f2CAS |

[34]  J. Rzayev, M. A. Hillmyer, J. Am. Chem. Soc. 2005, 127, 13373.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpsVGht7w%3D&md5=6ad593a9c0f5764f4e23662af78bd18dCAS |

[35]  H. Mao, P. L. Arrechea, T. S. Bailey, B. J. S. Johnson, M. A. Hillmyer, Faraday Discuss. 2005, 128, 149.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXpvFWqsLc%3D&md5=d2889e5a71dfa6a1a7f5154b45d08e45CAS |

[36]  T. S. Bailey, J. Rzayev, M. A. Hillmyer, Macromolecules 2006, 39, 8772.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtF2ntbfO&md5=48d54145da0497edebddc50b36e89f2eCAS |

[37]  F. Guo, K. Jankova, L. Schulte, M. E. Vigild, S. Ndoni, Macromolecules 2008, 41, 1486.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXoslyhsg%3D%3D&md5=0283dad80ea1fbef1124ba6cb986c6f1CAS |

[38]  F. Guo, K. Jankova, L. Schulte, M. E. Vigild, S. Ndoni, Langmuir 2010, 26, 2008.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFGls7fE&md5=f8cdeda21e8ad62bc0356ac5e8720a32CAS |

[39]  S. Ndoni, L. Li, L. Schulte, P. P. Szewezykowski, T. W. Hansen, F. X. Guo, R. H. Berg, M. E. Vigild, Macromolecules 2009, 42, 3877.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmtVGntb4%3D&md5=b11bd74a3514dff01d8079ba04fe0b91CAS |

[40]  N. Hadjichristidis, H. Iatrou, M. Pitsikalis, S. Pispas, A. Avgeropoulos, Prog. Polym. Sci. 2005, 30, 725.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXns1Sht7o%3D&md5=4148d64999ac61375251b149a08cbd9cCAS |

[41]  F. Lichterfeld, T. Schmeling, R. Strey, J. Phys. Chem. 1986, 90, 5762.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28Xlslyrt7s%3D&md5=bce3cf96ba8bd5cc425e9efa77dbcb67CAS |

[42]  M. Teubner, R. Strey, J. Chem. Phys. 1987, 87, 3195.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXlvVChs7w%3D&md5=3ce0f2e5e66673724a81cfaa3c09689fCAS |

[43]  G. Liu, J. Ding, S. Stewart, Angew. Chem. Int. Ed. 1999, 38, 835.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXisVeksL4%3D&md5=efc23f5ddfb16648757f5106a75f72f2CAS |

[44]  R. F. Storey, A. D. Scheuer, B. C. Achord, Polymer 2005, 46, 2141.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhvVSlsLo%3D&md5=14183d54cf6938f033c39b022c6dc975CAS |

[45]  F. Meng, S. Zheng, T. Liu, Polymer 2006, 47, 7590.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVSitrrE&md5=09bcdcc646b84be4d117e78335b0038eCAS |

[46]  H. G. Schild, Prog. Polym. Sci. 1992, 17, 163.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XltlWmuro%3D&md5=a0cfd4b3be524193d2ec1b966b05d898CAS |

[47]  C. H. Alarcon, S. Pennadam, C. Alexander, Chem. Soc. Rev. 2005, 34, 276.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhs1agu74%3D&md5=012e51470ad0da525da74948f45f1aeaCAS |

[48]  P. M. Mendes, Chem. Soc. Rev. 2008, 37, 2512.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1OksrjL&md5=49325e35d654497733282aa31776d795CAS |

[49]  L. Klouda, A. G. Mikos, Eur. J. Pharm. Biopharm. 2008, 68, 34.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVSgtbrP&md5=2edf18124ffe35ed2d5952b3bb24213dCAS |

[50]  A. Kumar, A. Srivastava, I. Y. Galaev, B. Mattiasson, Prog. Polym. Sci. 2007, 32, 1205.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFSisbvO&md5=b23da68f1e0e1ce44b4d0f377c9716b9CAS |

[51]  N. I. Shtanko, V. Y. Kabanov, P. Y. Apel, M. Yoshida, A. I. Vilenskii, J. Membr. Sci. 2000, 179, 155.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXovFaru78%3D&md5=a6e45ec48402f3a935e9bfc46d5f391bCAS |

[52]  S. J. Lue, J. Hsu, C. Chen, B. Chen, J. Membr. Sci. 2007, 301, 142.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXosF2ltLc%3D&md5=16073d60859a953c8634b4889743600dCAS |

[53]  Y. Xia, X. Yin, N. A. D. Burke, H. D. H. Stover, Macromolecules 2005, 38, 5937.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXltVylsLg%3D&md5=4aa6e82cd9b9cbef3f20cd7393fff034CAS |

[54]  S. Wang, Y. Zhu, Langmuir 2009, 25, 13448.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlagsbvF&md5=1057ad4a5ca034f4bbe7eea820cf02cdCAS |

[55]  M. A. Amendt, L. Chen, M. A. Hillmyer, Macromolecules 2010, 43, 3924.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXktVyht7k%3D&md5=d790708b96d79e9ba8ec552760969c06CAS |

[56]  H. W. Coover, D. J. Shields, J. Polym. Sci., Polym. Phys. Ed. 1959, 39, 532.

[57]  J. T. Lai, D. Filla, R. Shea, Macromolecules 2002, 35, 6754.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlslKisr8%3D&md5=c6a6dd0e24f9ae65064b1691c9b208b2CAS |

[58]  E. L. Cussler, in Diffusion Mass Transfer in Fluid Systems Second Edition 1997 (Cambridge University Press: New York).

[59]  B. Van Der Bruggen, C. Vandecasteele, T. Van Gestel, W. Doyen, R. Leysen, Environ. Prog. 2003, 22, 46.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjtVaitbg%3D&md5=1496db172bed95b869a3d3160f04c24fCAS |

[60]  R. Bird, W. E. Stewart, E. N. Lightfoot, in Transport Phenomena 2007 (J. Wiley & Sons, Inc.: New York).