Athelstan L. J. Beckwith and the Flowering of Hex-5-enyl Radical Cyclization Chemistry. The Adelaide Years
Algirdas K. Serelis AA Dulux Australia, Technology Centre, 1956 Princes Highway, Clayton, Vic. 3168, Australia. Email: algi.serelis@dulux.com.au
Australian Journal of Chemistry 64(4) 358-366 https://doi.org/10.1071/CH11068
Submitted: 11 February 2011 Accepted: 15 March 2011 Published: 18 April 2011
Abstract
Athel Beckwith chose to embark on a career in free radical chemistry at a time when it was largely ignored by all but a small coterie within the broader Organic Chemistry community. Of his many contributions in this area, the mechanistic clarification and exploitation of the cyclization of hex-5-enyl radical-containing systems is undoubtedly the most significant, leading to what is now, in a multitude of variants, a universally-used, powerful, sophisticated, selective, general synthetic methodology. This account revisits and highlights the early studies carried out by the Beckwith group at The University of Adelaide from the late-1960s to 1980, a period when the main breakthroughs in kinetic and mechanistic understanding were made, and the implications for wider synthetic utility in more complex hex-5enyl systems became apparent.
References
[1] Australian Academy of Science Interviews with Australian Scientists, 2003. http://www.science.org.au/scientists/interviews/b/ab.html.[2] (a) S. Arai, S. Sato, S. Shida, J. Chem. Phys. 1960, 33, 1277.
| Crossref | GoogleScholarGoogle Scholar |
(b) A. S. Gordon, S. R. Smith, J. Phys. Chem. 1962, 66, 521.
| Crossref | GoogleScholarGoogle Scholar |
(c) R. C. Lamb, P. W. Ayers, M. K. Toney, J. Am. Chem. Soc. 1963, 85, 3483.
| Crossref | GoogleScholarGoogle Scholar |
(d) C. Walling, M. S. Pearson, J. Am. Chem. Soc. 1964, 86, 2262.
| Crossref | GoogleScholarGoogle Scholar |
(e) N. O. Brace, J. Org. Chem. 1967, 32, 2711.
| Crossref | GoogleScholarGoogle Scholar |
[3] C. Walling, J. H. Cooley, A. A. Ponaras, E. J. Racah, J. Am. Chem. Soc. 1966, 88, 5361.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2sXpsVCrsA%3D%3D&md5=ced017dddb78356830b78d97bac93758CAS |
[4] M. Julia, Pure Appl. Chem. 1967, 15, 167.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1cXos1CgtA%3D%3D&md5=175600d52876343f3338b07392f8b8ccCAS |
[5] M. Julia, Acc. Chem. Res. 1971, 4, 386.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE38XhtlartQ%3D%3D&md5=d37c011a849e6ba5998b3e1fd602ee98CAS |
[6] D. L. Struble, A. L. J. Beckwith, G. E. Gream, Tetrahedron Lett. 1968, 9, 3701.
| Crossref | GoogleScholarGoogle Scholar |
[7] D. L. Struble, A. L. J. Beckwith, G. E. Gream, Tetrahedron Lett. 1970, 11, 4795.
| Crossref | GoogleScholarGoogle Scholar |
[8] A. L. J. Beckwith, G. E. Gream, D. L. Struble, Aust. J. Chem. 1972, 25, 3701.
[9] L. W. Menapace, H. G. Kuivila, J. Am. Chem. Soc. 1964, 86, 3047. Athel quickly embraced this method and used it extensively as a synthetic and kinetic tool throughout his subsequent research.
[10] G. E. Gream, Aust. J. Chem. 1972, 25, 1051.
| 1:CAS:528:DyaE38XhsFarsLs%3D&md5=0f21b69b64d393befcdb5727333ce0beCAS |
[11] A. L. J. Beckwith, Chem. Soc. Special Publ. 1970, 24, 239.
[12] A. L. J. Beckwith, Tetrahedron 1981, 37, 3073.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XhtVehtLY%3D&md5=1e9732ec4dd4fe614d405ee239a5f3c9CAS |
[13] (a) H. Fujimoto, S. Yamabe, T. Minato, K. Fukui, J. Am. Chem. Soc. 1972, 94, 9205.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3sXotlKrtg%3D%3D&md5=0fe67ebe3cbdcbb9acf4ac8b20a5207dCAS |
(b) M. J. S. Dewar, S. Olivella, J. Am. Chem. Soc. 1978, 100, 5290.
| Crossref | GoogleScholarGoogle Scholar |
[14] (a) A. L. J. Beckwith, C. H. Schiesser, Tetrahedron Lett. 1985, 26, 373.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXkt1Wqur0%3D&md5=8bfac9652a632db07d7da692b855dfadCAS |
(b) A. L. J. Beckwith, C. H. Schiesser, Tetrahedron 1985, 41, 3925.
| Crossref | GoogleScholarGoogle Scholar |
[15] H. B. Bürgi, J. D. Dunitz, A. Shefter, J. Am. Chem. Soc. 1973, 95, 5065.
| Crossref | GoogleScholarGoogle Scholar |
[16] (a) A. L. J. Beckwith, W. B. Gara, J. Am. Chem. Soc. 1969, 91, 5689.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1MXlt1egsrY%3D&md5=cbf33dce377649958e13fe022381be93CAS |
(b) A. L. J. Beckwith, W. B. Gara, J.C.S. Perkin 1975, II, 593.
[17] (a) A. L. J. Beckwith, W. B. Gara, J. Am. Chem. Soc. 1969, 91, 5691.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1MXltFaisbg%3D&md5=c8df5e7b4db998d51c869c96ca56b185CAS |
(b) A. L. J. Beckwith, W. B. Gara, J.C.S. Perkin 1975, II, 795.
[18] (a) A. L. J. Beckwith, G. F. Meijs, J.C.S. Chem. Comm. 1981, 595.
| 1:CAS:528:DyaL3MXlsFSgtrc%3D&md5=1f324b7ba3d79b8ba1d785e2c26f6a7bCAS |
(b) G. F. Meijs, A. L. J. Beckwith, J. Am. Chem. Soc. 1986, 108, 5890.
| Crossref | GoogleScholarGoogle Scholar |
(c) A. L. J. Beckwith, G. F. Meijs, J. Org. Chem. 1987, 52, 1922.
| Crossref | GoogleScholarGoogle Scholar |
[19] A. L. J. Beckwith, G. Moad, J.C.S. Chem. Comm. 1974, 472.
| 1:CAS:528:DyaE2MXkt1Krug%3D%3D&md5=94fc9539cbc12733a68d3667c68d43e0CAS |
[20] A. Effio, D. Griller, K. U. Ingold, A. L. J. Beckwith, A. K. Serelis, J. Am. Chem. Soc. 1980, 102, 1734.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXitFClsbc%3D&md5=daf96376655603c0cf842111aa8f2a94CAS |
[21] A. L. J. Beckwith, G. Moad, J.C.S. Perkin 1980, II, 1083.
[22] A. L. J. Beckwith, C. J. Easton, T. Lawrence, A. K. Serelis, Aust. J. Chem. 1983, 36, 545.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXksFakt7g%3D&md5=5e3230fcadcf2701295233e99c7f5bc7CAS |
[23] Highly substituted and heteroatom-containing analogues can undergo reasonably efficient cyclizations. See, for example: A. L. J. Beckwith, D. R. Boate, Tetrahedron Lett. 1985, 26, 1761.
(b) S.-U. Park, T. R. Varick, M. Newcomb, Tetrahedron Lett. 1990, 31, 2975.
| Crossref | GoogleScholarGoogle Scholar |
[24] For some contemporary overviews, see refs [4], [5], and [11].
[25] A. L. J. Beckwith, G. Phillipou, J.C.S. Chem. Comm. 1973, 280.
| 1:CAS:528:DyaE3sXktVClsbo%3D&md5=8087fc19505af60c525c1da48089fe92CAS |
[26] A. L. J. Beckwith, I. Blair, G. Phillipou, J. Am. Chem. Soc. 1974, 96, 1613.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2cXhtF2rtLY%3D&md5=9763c861a89dc685848165aae350a0c6CAS |
[27] A. L. J. Beckwith, I. A. Blair, G. Phillipou, Tetrahedron Lett. 1974, 15, 2254.
[28] See also: A. L. J. Beckwith, G. Phillipou, A. K. Serelis, Tetrahedron Lett. 1981, 22, 2811.
[29] A. L. J. Beckwith, D. W. Johnson, unpublished work, cited in [30].
[30] A. L. J. Beckwith, Tetrahedron 1981, 37, 3073.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XhtVehtLY%3D&md5=1e9732ec4dd4fe614d405ee239a5f3c9CAS |
[31] A. L. J. Beckwith, G. Moad, J.C.S. Perkin 1975, II, 1726.
[32] A. L. J. Beckwith, T. Lawrence, J.C.S. Perkin 1979, II, 1535.
[33] A. L. J. Beckwith, T. Lawrence, A. K. Serelis, J.C.S. Chem. Comm. 1980, 484.
| 1:CAS:528:DyaL3cXmtVeqsLw%3D&md5=04a4c58f44349be47e7bded08081c15cCAS |
[34] For Athel’s discussion of this effect, and further citations, see refs [22] and [32].
[35] C. Walling, A. Cioffari, J. Am. Chem. Soc. 1972, 94, 6059.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE38XltFens78%3D&md5=b24c3b322af55ce64c9f406032846cc5CAS |
[36] Another example, involving the 1-allylhex-5-enyl radical cyclizing with high cis-selectivity came to hand later. See ref. [28].
[37] ‘While you’re here Alg, tell me what you think about this. It’s been bedevilling me for ages.’ A. L. J. Beckwith, personal communication, approx. mid-1978.
[38] For a discussion of the mechanism and leading references, see: A. L. J. Beckwith, R. D. Wagner, J. Org. Chem. 1981, 46, 3638.
[39] A. L. J. Beckwith, R. G. Wagner, J. Am. Chem. Soc. 1979, 101, 7099.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXns1eltw%3D%3D&md5=1e3073fa6aac29de42de23935f3418abCAS |
[40] A. L. J. Beckwith, R. D. Wagner, J.C.S. Chem. Comm. 1980, 485.
| 1:CAS:528:DyaL3cXmtVCmsrY%3D&md5=a37b85f55804efb321c55700b533540bCAS |
[41] The stereodescriptors syn and anti in the present discussion are used with reference to the 1,2-dioxahex-5-enyl system as backbone.
[42] P. J. Barker, A. L. J. Beckwith, Y. Fung, Tetrahedron Lett. 1983, 24, 97.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXktVGis7w%3D&md5=94c7e6a691963c9cdb105d48bc2f9bd6CAS |
[43] A. L. J. Beckwith, A. K. Serelis, unpublished work.
[44] A. L. J. Beckwith, C. J. Easton, A. K. Serelis, J.C.S. Chem. Comm. 1980, 482.
| 1:CAS:528:DyaL3cXls1Oht78%3D&md5=dd0587a42de9c26fa0743d0448f07bd5CAS |
[45] (a) A. L. J. Beckwith, G. Phillipou, J.C.S. Chem. Comm. 1971, 658.
| 1:CAS:528:DyaE3MXks1Cju7s%3D&md5=7df6628a3916195f432806a13ac6555eCAS |
(b) A. L. J. Beckwith, G. Phillipou, Aust. J. Chem. 1976, 29, 1277.
| Crossref | GoogleScholarGoogle Scholar |
(c) A. L. J. Beckwith, G. Moad, J.C.S. Perkin 1980, II, 1473.
(d) A. L. J. Beckwith, C. J. Easton, J. Am. Chem. Soc. 1981, 103, 615.
| Crossref | GoogleScholarGoogle Scholar |
(e) A. L. J. Beckwith, C. J. Easton, J.C.S. Perkin 1983, II, 661.
[46] See, for example: J. E. Baldwin, J.C.S. Chem. Comm. 1976, 734.
[47] ‘….if Jack Baldwin can get away with it, so can I!’ A. L. J. Beckwith, personal communication, approx. late 1979.
[48] A. L. J. Beckwith, K. U. Ingold, in Rearrangements in Ground and Excited States (Ed. P. de Mayo) 1980, Vol. 1, p. 161 (Academic Press: New York).
[49] A. L. J. Beckwith, Reviews of Chemical Intermediates 1986, 7, 143.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXksFyrurk%3D&md5=97af95541c8a2754a6217a871b85bf6eCAS |
[50] A. L. J. Beckwith, Chem. Soc. Rev. 1993, 22, 143.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXlvVSisL8%3D&md5=f852c104cdf194a051ef6c07cfed3746CAS |
[51] Carl Schiesser has described the pre-1970s era as the ‘Dark Ages of free radical chemistry’ and the resurgence led by Athel and others as the ‘Free Radical Renaissance Period’. See: A. L. J. Beckwith, C.H. Schiesser, Org. Biomol. Chem. 2011, 9, 1736.
[52] (a) Some relevant books include: (a) B. Giese, Radicals in Organic Synthesis: Formation of Carbon-Carbon Bonds 1986 (Pergamon: Oxford).
D. P. Curran, N. A. Porter, B. Giese, Stereochemistry of Radical Reactions: Concepts, Guidelines, and Synthetic Applications 1996 (VCH: Weinheim).
Radicals in Organic Synthesis (Eds P. Renaud, M. P. Sibi) 2001, Vols 1 and 2 (Wiley-VCH: Weinheim).
[53] See for example: D. P. Curran, Synlett 1991, 63.
(b) C. P. Jasperse, D. P. Curran, T. L. Fevig, Chem. Rev. 1991, 91, 1237.
| Crossref | GoogleScholarGoogle Scholar |
(c) B. Giese, B. Kopping, T. Göbel, J. Dickhaut, G. Thoma, K. J. Kulicke, F. Trach, Org. React. 1996, 48, 301.
(d) D. P. Curran, Synthesis 1998, 417.
(e) D. P. Curran, Synthesis 1998, 489.
(f) G. Bar, A. F. Parsons, Chem. Soc. Rev. 2003, 32, 251.
| Crossref | GoogleScholarGoogle Scholar |
(g) T. R. Rheault, M. P. Sibi, Synthesis 2003, 803.
(h) K. C. Majumdar, P. K. Basu, P. P. Mukhopdhyay, Tetrahedron 2005, 61, 10603.
| Crossref | GoogleScholarGoogle Scholar |
(i) M. Albert, L. Fensterbank, E. Lacôte, M. Malacria, Top. Curr. Chem. 2006, 264, 1.
| Crossref | GoogleScholarGoogle Scholar |
(j) J. C. Walton, Top. Curr. Chem. 2006, 264, 163.
| Crossref | GoogleScholarGoogle Scholar |
(k) G. J. Rowlands, Tetrahedron 2010, 66, 1593.
| Crossref | GoogleScholarGoogle Scholar |
[54] Athel himself only rarely indulged in total synthesis, and then usually only as an illustrative exercise. See: A. L. J. Beckwith, S. W. Westwood, Tetrahedron 1989, 45, 5269.
(b) A. L. J. Beckwith, S. P. Joseph, R. T. A. Mayadunne, J. Org. Chem. 1993, 58, 4198.
| Crossref | GoogleScholarGoogle Scholar |
(c) A. L. J. Beckwith, R. T. A. Mayadunne, Arkivoc 2004, 80.