Molecular Photodiode and Two-channel Optoelectronic Demultiplexer based on the [60]Fullerene-porphyrin Tetrad
Kornelia Lewandowska A and Konrad Szaciłowski B C DA Instytut Fizyki Molekularnej Polskiej Akademii Nauk, ul. Mariana Smoluchowskiego 17, 60-179 Poznań, Poland.
B Wydział Metali Nieżelaznych, Akademia Górniczo-Hutnicza im. Stanisława Staszica w krakowie, al. Mickiewicza 30, 30-059 Kraków, Poland.
C Wydział Chemii, Uniwersytet Jagielloński, ul. Ingardena 3, 30-060 Kraków, Poland.
D Corresponding author. Email: szacilow@agh.edu.pl; szacilow@chemia.uj.edu.pl
Australian Journal of Chemistry 64(10) 1409-1413 https://doi.org/10.1071/CH11051
Submitted: 29 January 2011 Accepted: 21 July 2011 Published: 13 October 2011
Abstract
Photoelectrodes containing Langmuir–Blodget layers of [60]fullerene-porphyrin tetrad behave like photodiodes. Upon excitation within the whole absorption spectrum of the molecule they generate photocurrent, the direction of which depends on the conducting substrate potential. At negative polarization high intensity cathodic photocurrent are observed, while at positive polarization much weaker anodic photocurrents are observed. The forward-bias to reverse-bias current ratio amounts 5:1. Therefore the [60]fullerene-porphyrin tetrad is closely related to semiconductors showing photoelectrochemical photocurrent switching effect and is a promising material for molecular optoelectronics. It can be used as a simple molecular photodiode. Assignment of logic values to polarization of the photoelectrode and to light and photocurrent pulses results in a very efficient two-channel optoelectronic demultiplexer.
References
[1] M. Bendikov, F. Wudl, D. F. Perepichka, Chem. Rev. 2004, 104, 4891.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXovFSmtbw%3D&md5=61408611131c1cd597a3d0c6d08f46a0CAS |
[2] R. M. Metzger, Colloids Surf. A Physicochem. Eng. Asp. 2006, 284–285, 2.
| Crossref | GoogleScholarGoogle Scholar |
[3] D. M. Guldi, G. M. A. Rahman, V. Sgobba, C. Ehli, Chem. Soc. Rev. 2006, 35, 471.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjslKiurk%3D&md5=418db0520710bce48aaac13599617489CAS |
[4] A. Aviram, M. A. Ratner, Chem. Phys. Lett. 1974, 29, 277.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2MXhs1Cjtbw%3D&md5=2c579e1fa14a72c2d0ea36880420fb75CAS |
[5] D. Gust, T. A. Moore, A. L. Moore, J. Photochem. Photobiol. B. 2000, 58, 63.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhtFart7o%3D&md5=641b9189c3d0e20f0753803bfaa64cffCAS |
[6] D.-L. Jiang, T. Aida, Prog. Polym. Sci. 2005, 30, 403.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjsFymsro%3D&md5=44f10aa65e428f12465a732debae97a1CAS |
[7] H. Imahori, Org. Biomol. Chem. 2004, 2, 1425.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjvVSjt7s%3D&md5=20f412e25dc02d61dc0207e9ec26607aCAS |
[8] H. Imahori, Y. Mori, Y. Matano, J. Photochem. Photobiol. Photochem. Rev. 2003, 4, 51.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjtFejtrs%3D&md5=ae0b033d862042b96e0ca8c41e5bc5f1CAS |
[9] J. L. Segura, N. Martin, D. M. Guldi, Chem. Soc. Rev. 2005, 34, 31.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjtF2iug%3D%3D&md5=cc92e39499b4a5b6b943fc56fb46d384CAS |
[10] D. M. Guldi, Chem. Soc. Rev. 2002, 31, 22.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xhslenuro%3D&md5=94016e7cc7b215b6eaadc12d7108c519CAS |
[11] R. Koeppe, N. S. Sariciftci, Photochem. Photobiol. Sci. 2006, 5, 1122.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1Ohtr7F&md5=31598ceea6c88e0076eb6703da13c4abCAS |
[12] A. Aviram, J. Am. Chem. Soc. 1988, 110, 5687.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXkvVCmtro%3D&md5=f36754ff9653c333085aeb7cfadce430CAS |
[13] A. Graja, I. Olejniczak, A. Bogucki, D. Bonifazi, F. Diederich, Chem. Phys. 2004, 300, 227.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXisl2lsbg%3D&md5=b4f801b6400c07ff805b3c0e99ba92dcCAS |
[14] H. Imahori, K. Tamaki, H. Yamada, K. Yamada, Y. Sakata, Y. Nishimura, I. Yamazaki, M. Fujitsuka, O. Ito, Carbon 2000, 38, 1599.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXls1Cmt7c%3D&md5=d334c1c9e1bb10f90ecdfe632164c5cfCAS |
[15] H. Imahori, Y. Kashiwagi, T. Hasobe, M. Kimura, T. Hanada, Y. Nishimura, I. Yamazaki, Y. Araki, O. Ito, S. Fukuzumi, Thin Solid Films 2004, 451–452, 580.
| Crossref | GoogleScholarGoogle Scholar |
[16] R. M. Metzger, Chem. Rev. 2003, 103, 3803.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXntVKnurk%3D&md5=2cb63cef79227e98c9c68b8b716880cdCAS |
[17] K. Lewandowska, A. Bogucki, D. Wróbel, A. Graja, J. Photochem. Photobiol. A 2007, 188, 12.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjs1CmtL8%3D&md5=a3b18d9ee36c3e4bdf5f9a734825ac42CAS |
[18] M. Hebda, G. Stochel, K. Szaciłowski, W. Macyk, J. Phys. Chem. B 2006, 110, 15275.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XlsFOqt7w%3D&md5=f83bb82ac0e58e6ac5ea0cdcd87f781dCAS |
[19] K. Szaciłowski, W. Macyk, M. Hebda, G. Stochel, ChemPhysChem 2006, 7, 2384.
| Crossref | GoogleScholarGoogle Scholar |
[20] K. Szaciłowski, W. Macyk, Solid-State Electron. 2006, 50, 1649.
| Crossref | GoogleScholarGoogle Scholar |
[21] K. Szaciłowski, W. Macyk, G. Stochel, J. Am. Chem. Soc. 2006, 128, 4550.
| Crossref | GoogleScholarGoogle Scholar |
[22] L. F. O. Furtado, A. D. P. Alexiou, L. Gonçalves, H. E. Toma, K. Araki, Angew. Chem. Int. Ed. 2006, 45, 3143.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XkvFKntro%3D&md5=33f0f92ed603630cdad16f00951cc8caCAS |
[23] K. Szaciłowski, W. Macyk, G. Stochel, J. Mater. Chem. 2006, 16, 4603.
| Crossref | GoogleScholarGoogle Scholar |
[24] W. Macyk, G. Stochel, K. Szaciłowski, Chem. Eur. J. 2007, 13, 5676.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXotVaktLY%3D&md5=6ae5034d373b5768107e71ce72eceb48CAS |
[25] S. Gawęda, G. Stochel, K. Szaciłowski, Chem. Asian J. 2007, 2, 580.
| Crossref | GoogleScholarGoogle Scholar |
[26] D. Bonifazi, F. Diederich, Chem. Commun. 2002, 2178.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmvV2rsr8%3D&md5=f7c4da3c9c0dc85ae697594855a78413CAS |
[27] M. A. Thompson, ArgusLab 4.0, Planaria Software LLC, Seattle, WA, 2004. Available online at: http://www.arguslab.com [verified August 2011].
[28] M. A. Thompson, M. C. Zerner, J. Am. Chem. Soc. 1991, 113, 8210.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXmtVelsL0%3D&md5=d60cb399525f0404365af8800068e4a0CAS |
[29] M. A. Thompson, E. D. Glendening, D. Feller, J. Phys. Chem. 1994, 98, 10465.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXmtFemsr8%3D&md5=cb5d999d68b9ac10e3d4a222de555bb7CAS |
[30] M. A. Thompson, G. K. Schenter, J. Phys. Chem. 1995, 99, 6374.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXltVyns70%3D&md5=e6459212ca2be188c4a8a2a642f5d98dCAS |
[31] M. A. Thompson, J. Phys. Chem. 1996, 100, 14492.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xks1Cmtbo%3D&md5=5f1ef2e54b92591cc273a0bd31f65d92CAS |
[32] C. J. Casewit, K. S. Colwell, A. K. Rappe, J. Am. Chem. Soc. 1992, 114, 10035.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xmtleitrw%3D&md5=6d77c2a27d40061a49c34dd0441801d9CAS |
[33] C. J. Casewit, K. S. Colwell, A. K. Rappe, J. Am. Chem. Soc. 1992, 114, 10046.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XmsVSis78%3D&md5=6a4b3e6a59aabba20fc3744786c8761eCAS |
[34] A. K. Rappe, W. A. Goddard, J. Phys. Chem. 1991, 95, 3358.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXhvFaktbo%3D&md5=7c2a3b56a30472e48166350ae4cc6b06CAS |
[35] A. K. Rappe, K. S. Colwell, C. J. Casewit, Inorg. Chem. 1993, 32, 3438.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXkvVSmt70%3D&md5=fa38d093c7349700100da9e9a4ef4c6fCAS |