Wood Protection Properties of Quaternary Ammonium Spiroborate Esters Derived from Alkyl Tartrates †
Jenny M. Carr A D , Peter J. Duggan A G , David G. Humphrey A E , James A. Platts B and Edward M. Tyndall C FA CSIRO Materials Science and Engineering, Private Bag 10, Clayton South, Vic. 3169, Australia.
B School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, UK.
C Centre for Green Chemistry, Monash University, Clayton, Vic. 3800, Australia.
D Present address: Australian Forest Research Company Pty Ltd, 12 Wilton Crescent, Wheelers Hill, Vic. 3150, Australia.
E Present address: Arch Wood Protection (Aust.) Pty Ltd, Unit 3, Aerolink Business Park, 85–91 Keilor Park Drive, Tullamarine, Vic. 3043, Australia.
F Present address: Biota Holdings Ltd, 10/585 Blackburn Road, Notting Hill, Vic. 3168, Australia.
G Corresponding author. Email: peter.duggan@csiro.au
Australian Journal of Chemistry 64(4) 495-502 https://doi.org/10.1071/CH11022
Submitted: 13 January 2011 Accepted: 8 February 2011 Published: 18 April 2011
Abstract
Four new tetra-n-butylammonium spiroborates derived from dimethyl, diethyl, di-iso-propyl and di-n-butyl esters of l-tartaric acid have been prepared and their potential as environmentally benign wood protectants investigated. These compounds showed good activity in a no-choice cellulose paper bioassay with Coptotermes acinaciformis termites. The hydrolytic stability of these spiroborates is not high relative to other spiroborates, yet the tetra-n-butylammonium spiroborate derived from di-iso-propyl-l-tartrate showed remarkable permanence in timber in a demanding leaching test.
References
[1] J. M. Carr, P. J. Duggan, D. G. Humphrey, J. A. Platts, E. M. Tyndall, Aust. J. Chem. 2010, 63, 1423.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1aktL3O&md5=e39ab728906651accfac3f15562e6eacCAS |
[2] (a) V. Kalacheva, E. Svarcs, V. Ben’kovskii, I. Leonov, Zh. Neorg. Khim. 1970, 15, 401.
| 1:CAS:528:DyaE3cXhtFOht7s%3D&md5=b88f7ba67de680deccdd82941688fa68CAS |
(b) H. Horacek,German Patent DE 4015490 1991.
(c) H. Horacek, European Patent EP 453821 1991.
(d) T. Smith, J. Wu, US Patent US 127020 2003.
(e) T. W. Smith, S. K. Ahuja, US Patent US 1310532 2003.
(f) J. Dale, J. Chem. Soc. 1961, 922.
| Crossref | GoogleScholarGoogle Scholar |
[3] E. M. Tyndall, “Applications of Boron Acids and Esters”, Ph.D. Thesis, Monash University, Clayton, 2005.
[4] The authors thank V. J. Kenche for first suggesting the investigation of spiroborates derived from tartrate esters.
[5] B. Jones, J. Chem. Soc. 1933, 951.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaA3sXlvFWisw%3D%3D&md5=6dae42644b87cf98f0da23ae5170802cCAS |
[6] J. M. Carr, P. J. Duggan, D. G. Humphrey, E. M. Tyndall, Aust. J. Chem. 2005, 58, 21.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlt1Gjtw%3D%3D&md5=fc0ea8fc84464e9e554e2a4fc41f2057CAS |
[7] J. M. Carr, P. J. Duggan, D. G. Humphrey, J. A. Platts, E. M. Tyndall, Aust. J. Chem. 2005, 58, 901.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlejsLrO&md5=540c8b54343b6733d286bb1efad32cfbCAS |
[8] It should be noted that pentane-soluble lithium and sodium spiroborates related in structure to 1 have also been recently reported: M. Wrede, V. Ganza, G. Kannenberg, F. Rominger, B. F. Straub, Inorg. Chim. Acta 2010, in press.
[9] R. A. Saunders, J. A. Platts, New J. Chem. 2004, 28, 166.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhsFKit7w%3D&md5=f1ac8ba59a01462252feba9c38d346c8CAS |
[10] J. A. Melanson, C. M. Vogels, A. Decken, S. A. Westcott, Inorg. Chem. Commun. 2010, 13, 1396.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVCrs7nO&md5=840abf2597b459921a9630fe7cfa5f98CAS |
[11] Protocols for the Assessment of Wood Preservatives 1997 (Australasian Wood Preservation Committee: Melbourne).