Destabilization of Conjugated Systems of α-Dicarbonyls and of Cyanogen
Andreas A. Zavitsas A B , Donald W. Rogers A and Nikita Matsunaga AA Department of Chemistry and Biochemistry, Long Island University, University Plaza, Brooklyn, NY 11201, USA.
B Corresponding author. Email: zavitsas@liu.edu
Australian Journal of Chemistry 64(4) 390-393 https://doi.org/10.1071/CH10394
Submitted: 30 October 2010 Accepted: 22 November 2010 Published: 18 April 2011
Abstract
The formally conjugated system of α-carbonyls in 2,3-butanedione does not impart thermodynamic stabilization, but significant destabilization of 5.9 kcal mol–1. The conjugated triple bonds of cyanogen cause a large thermodynamic destabilization of 11.4 kcal mol–1, which is the difference in the enthalpies of hydrogenation of the first and second triple bonds. Experimental thermochemical and structural measurements and theoretical ab initio (G3) calculations support the destabilizations being reported. This work focuses only on the observable thermodynamic effects (enthalpies of hydrogenation), which are not necessarily related to the ability of conjugated groups to transmit electronic effects.
References
[1] H. Y. Afeefy, J. F. Liebman, S. E. Stein, Neutral Thermochemical Data, in NIST Chemistry Webbook, NIST Standard Reference Database No. 69 (Eds P. J. Linstrom, W. G. Mallard) (National Institute of Standards and Technology: Gaithersburg, MD 20899, USA) (http://webbbok.nist.gov).[2] G. B. Kistiakowsky, J. R. Ruhoff, H. A. Smith, W. E. Vaughan, J. Am. Chem. Soc. 1936, 58, 146.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaA28Xht1Gksw%3D%3D&md5=d2fb3a46b8de8e6c4afb8c1eab7099faCAS |
[3] (a) L. Pauling, G. W. Wheland, J. Chem. Phys. 1933, 1, 362.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaA3sXktlaruw%3D%3D&md5=9b18fba9385cfa5723bf67a705f692c6CAS |
(b) L. Pauling, J. Sherman, J. Chem. Phys. 1933, 1, 606.
(c) L. Pauling, J. Sherman, J. Chem. Phys. 1933, 1, 679.
| Crossref | GoogleScholarGoogle Scholar |
[4] W. Fang, D. W. Rogers, J. Org. Chem. 1992, 57, 2294.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xhslegtr8%3D&md5=fa3153a856fb49c00afacc690767ea0eCAS |
[5] (a) D. W. Rogers, N. Matsunaga, A. A. Zavitsas, F. J. McLafferty, J.F. Liebman, Org. Lett. 2003, 5, 2373.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXksVylu7Y%3D&md5=d9ecc580fb7e3029eac9474e0fd48bf3CAS | 12841733PubMed |
(b) D. W. Rogers, N. Matsunaga, F. J. McLafferty, A. A. Zavitsas, J. F. Liebman, J. Org. Chem. 2004, 69, 7143.
| Crossref | GoogleScholarGoogle Scholar |
[6] (a) P. D. Jarowski, M. D. Wodrich, C. S. Wannere, P. von R. Schleyer, K. N. Houk, J. Am. Chem. Soc. 2004, 126, 15036.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXptVals7s%3D&md5=6201f0934bcf8588a82877aaf9f3cb33CAS | 15547994PubMed |
(b) D. Bond, J. Org. Chem. 2007, 72, 5555.
| Crossref | GoogleScholarGoogle Scholar |
(c) P. D. Jarowski, F. Diederich, K. N. Houk, J. Org. Chem. 2005, 70, 1671.
| Crossref | GoogleScholarGoogle Scholar |
(d) A. C. Simmonett, H. F. Schaeffer, W. Allen, J. Chem. Phys. 2009, 130, 044301.
| Crossref | GoogleScholarGoogle Scholar |
[7] M. D. Wodrich, C. Wannere, Y. Mo, P. D. Jarowski, K. N. Houk, P. von R. Schleyer, Chem. Eur. J. 2007, 13, 7731.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFWktr3M&md5=059279ddedeb3d7d8b510e4cc834e62fCAS |
[8] D. Cappel, S. Tullmann, A. Krapp, G. Frenking, Angew. Chem. Int. Ed. 2005, 44, 3617.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlsVyktLs%3D&md5=de2b4b0a345f97f748eec88ee75fa3a9CAS |
[9] (a) I. Fernández, G. Frenking, Chem. Commun. (Camb.) 2006, 5030.
| Crossref | GoogleScholarGoogle Scholar | 17146517PubMed |
(b) E. Kleinpeter, A. Koch, J. Phys. Chem. A 2009, 113, 10852.
| Crossref | GoogleScholarGoogle Scholar |
(c) F. Bureš, W. B. Schweizer, C. Boudon, J.-P. Gisselbrecht, M. Gross, F. Diederich, Eur. J. Org. Chem. 2008, 994.
| Crossref | GoogleScholarGoogle Scholar |
[10] K. Eriks, T. D. Hayden, S. H. Yang, I. Y. Chan, J. Am. Chem. Soc. 1983, 105, 3940.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXktVGit7o%3D&md5=02729a5d4d72f352fc70a115591f9e76CAS |
[11] J. M. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr, T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian 03, revision B.04 2003 (Gaussian, Inc.: Pittsburgh, PA, USA).
[12] J. F. Liebman, Struct. Chem. 1992, 3, 449.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXlvFSnsQ%3D%3D&md5=4ec6632a9abf1a93f25301549c5471b4CAS |
[13] A. A. Zavitsas, J. Phys. Chem. A 2003, 107, 897.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjsFKktQ%3D%3D&md5=8f065d155a8ce9d5544c659a590b1b12CAS |
[14] A. A. Zavitsas, D. W. Rogers, N. Matsunaga, J. Org. Chem. 2010, 75, 6502.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFaitr7O&md5=3f2c57e6d32e5d6204f7042fb8f868f2CAS | 20825149PubMed |
[15] C. Hansch, A. Leo, R. W. Taft, Chem. Rev. 1991, 91, 165.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXhs1ehsLo%3D&md5=2001bcbad8b9872a190e08d2f4b11aa0CAS |
[16] (a) J. P. Ferris, J. C. Guillemin, J. Org. Chem. 1990, 55, 5601.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXlslWntbw%3D&md5=ed1cdb0e2a58847fc581f325fd31be1aCAS | 11543604PubMed |
(b) J. L. Menke, E. V. Patterson, R. J. McMahon, J. Phys. Chem. A 2010, 114, 6431.
| Crossref | GoogleScholarGoogle Scholar |
[17] D. D. Ebbing, S. D. Gammon, General Chemistry, 6th edn 1999 (Houghton Mifflin: Boston, MA, USA).
[18] C. E. Jakobsche, A. Choudhary, S. J. Miller, R. T. Raines, J. Am. Chem. Soc. 2010, 132, 6651.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXltFyrsbo%3D&md5=1cc247091951966cb6e798ef5f59732bCAS | 20420451PubMed |
[19] Experimental values cited in Computational Chemistry Comparison and Benchmark Database, release 15, 2010. NIST Standard Reference Database 101 (National Institute of Standards and Technology: Gaithersburg, MD 20899, USA) (http://cccbdb.nist.gov/).
[20] R. Notario, M. V. Roux, J. F. Liebman, Struct. Chem. 2010, 21, 481.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXls1CqtL0%3D&md5=e296b4db13e231a85d79fd8aff1c12f0CAS |