Photoactive and Electroactive Dendrimers: Future Trends and Applications
Paola Ceroni A B and Margherita Venturi A BA Dipartimento di Chimica ‘G. Ciamician’, Università di Bologna, via Selmi 2,40126 Bologna, Italy.
B Correspoding authors. Email: paola.ceroni@unibo.it; margherita.venturi@unibo.it
Paola Ceroni is an Associate Professor at the University of Bologna. In 1998, she obtained her Ph.D. in Chemical Sciences at the University of Bologna, after a period in the USA (Professor Allen J. Bard's laboratory). Paola Ceroni's research focusses on the photochemistry and electrochemistry of molecular and supramolecular systems, with particular emphasis on photoactive dendrimers. She is a co-author of about 100 scientific papers in refereed international journals. |
Margherita Venturi is a full Professor of Chemistry at the University of Bologna. She started her career at the National Research Council in Bologna, where she used radiolytic techniques to study the mechanisms involved in model systems for the conversion of solar energy. Her present research is focussed on the design, construction, and characterization of molecular-level devices and machines in the context of the bottom-up approach to nanotechnology. She is a co-author of more than 190 publications in international journals, including several reviews and two monographs. |
Australian Journal of Chemistry 64(2) 131-146 https://doi.org/10.1071/CH10326
Submitted: 4 September 2010 Accepted: 7 December 2010 Published: 15 February 2011
Abstract
The initial interest in dendrimer chemistry was the synthesis of such aesthetically pleasant macromolecules. Nowadays, the field is moving to applications in various multidisciplinary areas, such as medicine, biology, chemistry, physics, and engineering, i.e. at the interface of many disciplines. This short review describes some promising applications of photoactive and electroactive dendrimers as artificial enzymes, molecular batteries, sensors with signal amplification, photoswitchable hosts, systems for energy up-conversion, and light-harvesting antennas. The reported examples clearly show that these applications take advantage of the unique aspects of dendrimer structure: (i) three-dimensional array; (ii) generation-dependent size; (iii) presence of selected functional units in predetermined sites; and (iv) endo- and exo-receptor capabilities.
References
[1] F. Vögtle, G. Richardt, N. Werner, Dendrimer Chemistry 2009 (Wiley-VCH: Chichester).G. R. Newkome, F. Vögtle, Dendrimers and Dendrons 2001 (Wiley-VCH: Weinheim).
Dendrimers and Other Dendritic Polymers 2001 (Eds J. M. J. Fréchet, D. A. Tomalia) (John Wiley & Sons: Chichester).
[2] (a) For reviews, see: Schalley C. A. , Baytekin B. , Baytekin H. T. , Engeser M. , Felder T. , Rang A. , J. Phys. Org. Chem. 2006, 19, 479.
(b) T. Darbre, J.-L. Reymond, Acc. Chem. Res. 2006, 39, 925.
| Crossref | GoogleScholarGoogle Scholar |
(c) D. Astruc, F. Chardac, Chem. Rev. 2001, 101, 2991.
| Crossref | GoogleScholarGoogle Scholar |
(d) M. W. P. L. Baars, E. W. Meijer, Top. Curr. Chem. 2000, 210, 131.
| Crossref | GoogleScholarGoogle Scholar |
[3] Special Issue on Dendrimers (Ed. J.-P. Majoral) in New J. Chem. 2007, 31(7).
(b) M. Gingras, J.-M. Raimundo, Y. M. Chabre, Angew. Chem. Int. Ed. 2007, 46, 1010.
| Crossref | GoogleScholarGoogle Scholar |
(c) D. Méry, D. Astruc, Coord. Chem. Rev. 2006, 250, 1965.
| Crossref | GoogleScholarGoogle Scholar |
Special Issue on Dendrimers and Dendritic Polymers (Eds D. A. Tomalia, J. M. J. Fréchet) in Prog. Polym. Sci. 2005, 30(3–4).
(e) R. W. J. Scott, O. M. Wilson, R. M. Crooks, J. Phys. Chem. B 2005, 109, 692.
| Crossref | GoogleScholarGoogle Scholar |
(f) P. A. Chase, R. J. M. Klein Gebbink, G. van Koten, J. Organomet. Chem. 2004, 689, 4016.
| Crossref | GoogleScholarGoogle Scholar |
(g) W. Ong, M. Gomez-Kaifer, A. E. Kaifer, Chem. Commun. 2004, 1677.
| Crossref | GoogleScholarGoogle Scholar |
(h) M. Ballauff, C. N. Likos, Angew. Chem. Int. Ed. 2004, 43, 2998.
| Crossref | GoogleScholarGoogle Scholar |
(i) A.-M. Caminade, J.-P. Majoral, Acc. Chem. Res. 2004, 37, 341.
| Crossref | GoogleScholarGoogle Scholar |
[4] (a) For some recent reviews, see: Franc G. , Kakkar A. K. , Chem. Soc. Rev. 2010, 39, 1536.
(b) D. Wilms, S. E. Stiriba, H. Frey, Acc. Chem. Res. 2010, 43, 129.
| Crossref | GoogleScholarGoogle Scholar |
[5] Analytical Methods in Supramolecular Chemistry 2007 (Ed. C. Schalley) (Wiley-VCH: Weinheim).
[6] (a) S.-H. Hwang, C. D. Shreiner, C. N. Moorefield, G. R. Newkome, New J. Chem. 2007, 31, 1192.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXntlWkurc%3D&md5=adff40638f1dfb6b6b21b29562b73b11CAS |
(b) P. Ceroni, G. Bergamini, F. Marchioni, V. Balzani, Prog. Polym. Sci. 2005, 30, 453.
| Crossref | GoogleScholarGoogle Scholar |
[7] P. Ceroni, M. Venturi, in Electrochemistry of Functional Supramolecular Systems 2010, Ch. 6, pp. 145–184 (Eds P. Ceroni, A. Credi, M. Venturi) (Wiley & Sons, Inc.: Hoboken, NJ).
A. E. Kaifer, M. Gómez-Kaifer, Supramolecular Electrochemistry 1999 (Wiley-VCH: Weinheim).
[8] V. Balzani, F. Scandola, Supramolecular Photochemistry 1991 (Horwood: Chichester).
[9] (a) For a more detailed description, see: N. Turro, V. Ramamurthy, J. C. Scaiano, Principles of Molecular Photochemistry. An Introduction 2009 (University Science Books: Sausalito, CA).
P. Klán, J. Wirz, Photochemistry of Organic Compounds. From Concepts to Practice 2009 (Wiley: Wiltshire).
[10] P. Piotroviak, in Electron Transfer in Chemistry 2001, Vol. 1, Part 1, Ch. 6, pp. 215–237 (Ed. V. Balzani) (Wiley-VCH: Weinheim).
[11] J. Kofoed, J.-L. Reymond, Curr. Opin. Chem. Biol. 2005, 9, 656.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1aqu7fP&md5=8868632b11e3ba50bfdc6be4570b8d19CAS | 16260174PubMed |
[12] W.-S. Li, T. Aida, Chem. Rev. 2009, 109, 6047.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFGqs7rJ&md5=0543105b266b53d96e666af5096b30a5CAS | 19769361PubMed |
[13] D.-L. Jiang, T. Aida, Chem. Commun. 1996, 1523.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XksVWmtro%3D&md5=8f5065b7d7f56c5d668ac2ea17351493CAS |
[14] (a) A. Zingg, B. Felber, V. Gramlich, L. Fu, L. P. Collman, F. Diederich, Helv. Chim. Acta 2002, 85, 333.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xht1OjsbY%3D&md5=f64d5b9ab406fe92d5a73db4a61d981bCAS |
(b) P. Weyermann, F. Diederich, J. Chem. Soc., Perkin Trans. 1 2000, 4231.
| Crossref | GoogleScholarGoogle Scholar |
(c) J. P. Collman, L. Fu, A. Zingg, F. Diederich, Chem. Commun. 1997, 193.
| Crossref | GoogleScholarGoogle Scholar |
[15] S. Van Doorslaer, A. Zingg, A. Schweiger, F. Diederich, ChemPhysChem 2002, 3, 659.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmslChtro%3D&md5=c79c505dc3ac6560a9252a8fb65add52CAS | 12503145PubMed |
[16] (a) P. Bhyrappa, J. K. Young, J. S. Moore, K. S. Suslick, J. Am. Chem. Soc. 1996, 118, 5708.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xjt1eksrk%3D&md5=1990f9bfb3776e86be442744fe0b0f68CAS |
(b) P. Bhyrappa, J. K. Young, J. S. Moore, K. S. Suslick, J. Mol. Catal. Chem. 1996, 113, 109.
| Crossref | GoogleScholarGoogle Scholar |
[17] (a) P. Weyermann, F. Diederich, Helv. Chim. Acta 2002, 85, 599.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XitFyqsrg%3D&md5=d410bff1871076e28441088dd7ec98b6CAS |
(b) M. Kimura, T. Shiba, M. Yamazaki, K. Hanabusa, H. Shirai, N. Kobayashi, J. Am. Chem. Soc. 2001, 123, 5636.
| Crossref | GoogleScholarGoogle Scholar |
[18] (a) C.-M. Che, J.-S. Huang, J.-L. Zhang, C. R. Chim. 2003, 6, 1105.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXoslOgtL4%3D&md5=92747a6598f2d93e42a12b1c43583ba7CAS |
(b) J.-L. Zhang, H.-B. Zhou, J.-S. Huang, C.-M. Che, Chemistry 2002, 8, 1554.
| Crossref | GoogleScholarGoogle Scholar |
[19] (a) M. Uyemura, T. Aida, Chemistry 2003, 9, 3492.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmsFWls7g%3D&md5=9b5619fca9c9532dab15c882dabb41e0CAS | 12898676PubMed |
(b) M. Uyemura, T. Aida, J. Am. Chem. Soc. 2002, 124, 11392.
| Crossref | GoogleScholarGoogle Scholar |
[20] T. Darbre, J.-L. Reymond, Acc. Chem. Res. 2006, 39, 925.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XovVahtr8%3D&md5=6e951546203cb357acba22f221e80e97CAS | 17176031PubMed |
[21] D. Astruc, C. Ornelas, J. Ruiz, Chemistry 2009, 15, 8936.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtV2qs77E&md5=57bf48e33072c739d4b72fcf45d923d5CAS | 19685538PubMed |
[22] C. Ornelas, J. Ruiz, C. Belin, D. Astruc, J. Am. Chem. Soc. 2009, 131, 590.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmsVCg&md5=7b6e8e61f08b85df442de8267385e795CAS | 19113856PubMed |
[23] (a) S. Heinen, W. Meyer, L. Walder, J. Electroanal. Chem. 2001, 498, 34.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhsVent7Y%3D&md5=4a45fd87efe6ab7ddb9895b9e430fe06CAS |
(b) S. Heinen, L. Walder, Angew. Chem. Int. Ed. 2000, 39, 806.
| Crossref | GoogleScholarGoogle Scholar |
[24] (a) C. M. Ronconi, J. F. Stoddart, V. Balzani, M. Baroncini, P. Ceroni, C. Giansante, M. Venturi, Chemistry 2008, 14, 8365.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1Gju7vJ&md5=12e537e9a890064a45a84df71911f74eCAS | 18666286PubMed |
(b) F. Marchioni, M. Venturi, A. Credi, V. Balzani, M. Belohradsky, A. M. Elizarov, H.-R. Tseng, J. F. Stoddart, J. Am. Chem. Soc. 2004, 126, 568.
| Crossref | GoogleScholarGoogle Scholar |
(c) F. Marchioni, M. Venturi, P. Ceroni, V. Balzani, M. Belohradsky, A. M. Elizarov, H.-R. Tseng, J. F. Stoddart, Chemistry 2004, 10, 6361.
| Crossref | GoogleScholarGoogle Scholar |
[25] P. M. S. Monk, The Viologens – Physicochemical Properties, Synthesis and Applications of the Salts of 4,4′-Bipyridine 1998 (John Wiley & Sons: Chichester).
[26] W. S. Baker, B. I. Lemon, R. M. Crooks, J. Phys. Chem. B 2001, 105, 8885.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmvVSjurk%3D&md5=b71b369e8d719e1eadf40df4e53dbc36CAS |
[27] (a) V. Balzani, G. Bergamini, F. Marchioni, P. Ceroni, F. Vögtle, Coord. Chem. Rev. 2007, 251, 525.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1yjsrg%3D&md5=beecf9bc130fee63e932b3ed9f2058f2CAS |
(b) P. Ceroni, V. Vicinelli, M. Maestri, V. Balzani, S.-K. Lee, J. van Heyst, M. Gorka, F. Vögtle, J. Organomet. Chem. 2004, 689, 4375.
| Crossref | GoogleScholarGoogle Scholar |
[28] D. Astruc, C. Ornelas, J. R. Aranzaes, J. Inorg. Organomet. Polym. 2008, 18, 4.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXptlentw%3D%3D&md5=fb7dfd0e1a7b3cc2de20d36f0aaf940dCAS |
[29] S. W. Thomas, G. D. Joly, T. M. Swager, Chem. Rev. 2007, 107, 1339.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjsVOrsro%3D&md5=088f7e48932b144d8473b8cf786df078CAS | 17385926PubMed |
[30] (a) K. Sarkar, K. Dhara, M. Nandi, P. Roy, A. Bhaumik, P. Banejee, Adv. Funct. Mater. 2009, 19, 223.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhslequ7g%3D&md5=4eadd8b7756a2b4d72770fc38fec116eCAS |
(b) F. Gouanvé, T. Schuster, E. Allard, R. Meallet-Renault, C. Larpent, Adv. Funct. Mater. 2007, 17, 2746.
| Crossref | GoogleScholarGoogle Scholar |
(c) J. Yan, M. C. Estévez, J. E. Smith, K. Wang, X. He, L. Wang, W. Tan, Nano Today 2007, 2, 44.
| Crossref | GoogleScholarGoogle Scholar |
[31] (a) For some recent reviews, see: Astruc D. , Ornelas C. , Ruiz J. , Acc. Chem. Res. 2008, 41, 841.
(b) A. E. Kaifer, Eur. J. Inorg. Chem. 2007, 5015.
| Crossref | GoogleScholarGoogle Scholar |
[32] C. Ornelas, J. Ruiz, J. R. Aranzaes, E. Cloutet, S. Alves, D. Astruc, Angew. Chem. Int. Ed. 2007, 46, 872.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhs1aqt74%3D&md5=2b7fbe38aa99b9baaa46fc77ecbd7034CAS |
[33] C. Ornelas, J. Ruiz, J. R. Aranzaes, L. Salmon, D. Astruc, Chemistry 2008, 14, 50.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXltVarsLc%3D&md5=83787b6958bb5f8df6986604ddb91a2cCAS | 18058786PubMed |
[34] J. Camponovo, J. Ruiz, E. Cloutet, D. Astruc, Chemistry 2009, 15, 2990.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjs1GmtLo%3D&md5=bb7456251b471adb1d1b1b5cd016dc31CAS | 19191235PubMed |
[35] F. Vögtle, S. Gestermann, C. Kauffmann, P. Ceroni, V. Vicinelli, L. De Cola, V. Balzani, J. Am. Chem. Soc. 1999, 121, 12161.
| Crossref | GoogleScholarGoogle Scholar |
[36] (a) V. Balzani, P. Ceroni, S. Gestermann, C. Kauffmann, M. Gorka, F. Vögtle, Chem. Comm. 2000, 853.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXivFGqu78%3D&md5=d758fdd10dbb3de57e204fca7b0d1b76CAS |
(b) F. Vögtle, S. Gestermann, C. Kauffmann, P. Ceroni, V. Vicinelli, V. Balzani, J. Am. Chem. Soc. 2000, 122, 10398.
| Crossref | GoogleScholarGoogle Scholar |
[37] H. Rau, in Photochromism, Molecules and Systems 1990, Ch. 4, pp. 165–192 (Eds H. Dürr, H. Bouas-Laurent) (Elsevier: Amsterdam).
(b) G. S. Kumar, D. C. Neckers, Chem. Rev. 1989, 89, 1915.
| Crossref | GoogleScholarGoogle Scholar |
[38] V. Balzani, M. Venturi, A. Credi, Molecular Devices and Machines – A Journey into the Nanoworld 2008 (Wiley-VCH: Weinheim).
Molecular Switches 2001 (Ed. B. L. Feringa) (Wiley-VCH: Weinheim).
[39] For a recent review, see: Deloncle R. , Caminade A.-M. , J. Photochem. Photobiol. Chem. 2010, 11, 25.
[40] (a) S. Park, O. N. Kadkin, J.-G. Tae, M.-G. Choi, Inorg. Chim. Acta 2008, 361, 3063.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXosVOlsbk%3D&md5=7eb0c41404840edfabd04b93a227c120CAS |
(b) F. Puntoriero, G. Bergamini, P. Ceroni, V. Balzani, F. Vögtle, New J. Chem. 2008, 32, 401.
| Crossref | GoogleScholarGoogle Scholar |
(c) L.-X. Liao, F. Stellacci, D. V. McGrath, J. Am. Chem. Soc. 2004, 126, 2181.
| Crossref | GoogleScholarGoogle Scholar |
(d) D. Grebel-Koehler, D. Liu, S. De Feyter, V. Enkelmann, T. Weil, C. Engels, C. Samyn, K. Müllen, F. C. De Schryver, Macromolecules 2003, 36, 578.
| Crossref | GoogleScholarGoogle Scholar |
(e) S. Li, D. V. McGrath, J. Am. Chem. Soc. 2000, 122, 6795.
| Crossref | GoogleScholarGoogle Scholar |
(f) J.-W. Weener, E. W. Meijer, Adv. Mater. 2000, 12, 741.
| Crossref | GoogleScholarGoogle Scholar |
[41] F. Vögtle, M. Gorka, R. Hesse, P. Ceroni, M. Maestri, V. Balzani, Photochem. Photobiol. Sci. 2002, 1, 45.
| Crossref | GoogleScholarGoogle Scholar | 12659148PubMed |
[42] F. Puntoriero, P. Ceroni, V. Balzani, G. Bergamini, F. Vögtle, J. Am. Chem. Soc. 2007, 129, 10714.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXptVaquro%3D&md5=f744a400105cb2e2f593929cc1969798CAS | 17696531PubMed |
[43] U. Hahn, M. Gorka, F. Vögtle, V. Vicinelli, P. Ceroni, M. Maestri, V. Balzani, Angew. Chem. Int. Ed. 2002, 41, 3595.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XotFymsr8%3D&md5=c73bed15d3d72aaadbdae747b9a19ff4CAS |
[44] (a) For recent reviews, see: Jang W.-D. , Selim K. M. K. , Lee C.-H. , Kang I.-K. , Prog. Polym. Sci. 2009, 34, 1.
(b) T. A. Theodossiou, A. Pantos, I. Tsogas, C. M. Paleos, ChemMedChem 2008, 3, 1635.
| Crossref | GoogleScholarGoogle Scholar |
Special Issue on Biomedical Applications of Dendrimers (Ed. M. Micha-Screttas) in Curr. Top. Med. Chem. 2008, 8(14).
[45] G. Bergamini, P. Ceroni, M. Maestri, V. Balzani, S.-K. Lee, F. Vögtle, Photochem. Photobiol. Sci. 2004, 3, 898.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnt1amu7Y%3D&md5=72653f68f74cc4aa717f41054ef3cfd0CAS | 15346193PubMed |
[46] Singh-Rachford T. N. , Lott J. , Weder C. , Castellano F. N. , J. Am. Chem. Soc. 2009, 131, 12007 and references therein.
[47] (a) F. Puntoriero, F. Nastasi, M. Cavazzini, S. Quici, S. Campagna, Coord. Chem. Rev. 2007, 251, 536.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1yjsrk%3D&md5=f42309bdde47ffab7f270e0bcdddf777CAS |
(b) V. Balzani, P. Ceroni, M. Maestri, V. Vicinelli, Curr. Opin. Chem. Biol. 2003, 7, 657.
| Crossref | GoogleScholarGoogle Scholar |
[48] (a) M.-S. Choi, T. Aida, T. Yamazaki, I. Yamazaki, Chemistry 2002, 8, 2667.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XltVGrsbw%3D&md5=f36a5e63615c143378c79cee8111d2abCAS |
(b) M.-S. Choi, T. Aida, T. Yamazaki, I. Yamazaki, Angew. Chem. Int. Ed. 2001, 40, 3194.
| Crossref | GoogleScholarGoogle Scholar |
[49] D.-L. Jiang, T. Aida, J. Am. Chem. Soc. 1998, 120, 10895.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmsVWjsb8%3D&md5=1e5c5955ee8d12fbfb98d7b9695b6b7aCAS |
[50] (a) For some recent reviews, see: Escribano P. , Julián-López B. , Planelles-Aragó J. , Cordoncillo E. , Viana B. , Sanchez C. , J. Mater. Chem. 2008, 18, 23.
(b) J. P. Leonard, C. B. Nola, F. Stomeo, T. Gunnlaugsson, Top. Curr. Chem. 2007, 281, 1.
| Crossref | GoogleScholarGoogle Scholar |
(c) A. de Bettencourt-Dias, Dalton Trans. 2007, 2229.
| Crossref | GoogleScholarGoogle Scholar |
(d) J.-C. G. Bünzli, C. Piguet, Chem. Soc. Rev. 2005, 34, 1048.
| Crossref | GoogleScholarGoogle Scholar |
[51] (a) D. Parker, R. S. Dickins, H. Puschmann, C. Crossland, J. A. K. Howard, Chem. Rev. 2002, 102, 1977.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xjslens7c%3D&md5=02aab6dcf3839efb477d56c832594459CAS | 12059260PubMed |
(b) N. Sabbatini, M. Guardigli, J.-M. Lehn, Coord. Chem. Rev. 1993, 123, 201.
| Crossref | GoogleScholarGoogle Scholar |
[52] (a) I. Lukeš, J. Kotek, P. Vojtíšek, P. Hermann, Coord. Chem. Rev. 2001, 216–217, 287.
| Crossref | GoogleScholarGoogle Scholar |
(b) B. P. Hay, R. D. Hancock, Coord. Chem. Rev. 2001, 212, 61.
| Crossref | GoogleScholarGoogle Scholar |
(c) L. Fabbrizzi, M. Licchelli, P. Pallavicini, D. Sacchi, Supramol. Chem. 2001, 13, 569.
| Crossref | GoogleScholarGoogle Scholar |
[53] C. Saudan, V. Balzani, P. Ceroni, M. Gorka, M. Maestri, V. Vicinelli, F. Vögtle, Tetrahedron 2003, 59, 3845.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjvVCltr8%3D&md5=383569c7323e41abfb8e2297a248f920CAS |
[54] C. Giansante, P. Ceroni, V. Balzani, F. Vögtle, Angew. Chem. Int. Ed. 2008, 47, 5422.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXovFynt7k%3D&md5=dc2ecda69ae2732478aee0218cbe5c61CAS |
[55] (a) M. D. Ward, Coord. Chem. Rev. 2006, 250, 3128.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFKktbnL&md5=65522c540829b5dd6c8286dace7b227bCAS |
(b) F. Scandola, M. T. Indelli, Pure Appl. Chem. 1988, 60, 973.
| Crossref | GoogleScholarGoogle Scholar |
(c) V. Balzani, N. Sabbatini, F. Scandola, Chem. Rev. 1986, 86, 319.
| Crossref | GoogleScholarGoogle Scholar |
[56] (a) For some examples, see: Lazarides T. , Easun T. L. , Veyne-Marti C. , Alsindi W. Z. , George M. W. , Deppermann N. , Hunter C. A. , Adams H. , Ward M. D. , J. Am. Chem. Soc. 2007, 129, 4014.
(b) P. V. Bernhardt, F. Bozoglian, M. Font-Bardía, M. Martínez, A. P. Meacham, B. Sienra, X. Solans, Eur. J. Inorg. Chem. 2007, 5270.
| Crossref | GoogleScholarGoogle Scholar |
(c) G. M. Davies, S. J. A. Pope, H. Adams, S. Faulkner, M. D. Ward, Inorg. Chem. 2005, 44, 4656.
| Crossref | GoogleScholarGoogle Scholar |
(d) M. Kovács, A. Horváth, J. Photochem. Photobiol. Chem. 2004, 163, 13.
| Crossref | GoogleScholarGoogle Scholar |
(e) F. Loiseau, G. Marzanni, S. Quici, M. T. Indelli, S. Campagna, Chem. Commun. 2003, 286.
| Crossref | GoogleScholarGoogle Scholar |
[57] M. A. Kostiainen, O. Kasyutich, J. J. M. Cornelissen, R. J. M. Nolte, Nat. Chem. 2010, 2, 394.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXltVyksr8%3D&md5=2afb4a783e06bad5aa089a8edd4f53baCAS | 20414241PubMed |
[58] V. Percec, D. A. Wilson, P. Leowanawat, C. J. Wilson, A. D. Hughes, M. S. Kaucher, D. A. Hammer, D. H. Levine, A. J. Kim, F. S. Bates, K. P. Davis, T. P. Lodge, M. L. Klein, R. H. DeVane, E. Aqad, B. M. Rosen, A. O. Argintaru, M. J. Sienkowska, K. Rissanen, S. Nummelin, J. Ropponen, Science 2010, 328, 1009.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmtFCnsLo%3D&md5=f762e5718a81f1d4d3f14b37306d2da5CAS | 20489021PubMed |