Photo‐induced Energy Transfer in a Th‐Symmetrical Hexakis‐adduct of C60 Substituted with π‐Conjugated Oligomers
Julien Iehl A , Michel Holler A , Jean‐François Nierengarten A E , K. Yoosaf B , Joanna M. Malicka B , Nicola Armaroli B E , Jean‐Marc Strub C , Alain Van Dorsselaer C E and Béatrice Delavaux‐Nicot D EA Laboratoire de Chimie des Matériaux Moléculaires, Université de Strasbourg et CNRS (UMR 7509), Ecole Européenne de Chimie, Polymères et Matériaux (ECPM),25 rue Becquerel, 67087 Strasbourg Cedex 2, France.
B Molecular Photoscience Group, Istituto per la Sintesi Organica e la Fotoreattività (ISOF), Consiglio Nazionale delle Ricerche (CNR), via P. Gobetti 101,40129 Bologna, Italy.
C Laboratoire de Spectrométrie de Masse Bio‐organique, Institut Pluridisciplinaire Hubert Curien (IPHC), Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), Université de Strasbourg et CNRS (UMR 7178), 25 rue Becquerel,67087 Strasbourg Cedex 2, France.
D Laboratoire de Chimie de Coordination (LCC), CNRS, Université de Toulouse (UPS, INP), 205 route de Narbonne, 31077 Toulouse Cedex 4, France.
E Corresponding authors. Email: nierengarten@chimie.u-strasbg.fr, armaroli@isof.cnr.it, vandors@chimie.u-strasbg.fr, Beatrice.Delavaux-Nicot@lcc-toulouse.fr
Australian Journal of Chemistry 64(2) 153-159 https://doi.org/10.1071/CH10319
Submitted: 30 August 2010 Accepted: 15 October 2010 Published: 15 February 2011
Abstract
A stilbene derivative bearing a terminal alkyne unit has been prepared and grafted onto a Th‐symmetrical C60 hexakis‐adduct building block under alkyne/azide copper mediated Huisgen 1,3‐dipolar cycloaddition conditions. The photophysical properties of the resulting fullerene derivative surrounded by 12 conjugated oligomers have been investigated. Upon excitation of the peripheral chromophores, an efficient intramolecular energy transfer to the C60 core has been evidenced.
References
[1] (a) (a) For selected reviews, see: N. Martín, L. Sanchez, B. Illescas, I. Perez, Chem. Rev. 1998, 98 2527.(b) D. Gust, T. A. Moore, A. L. Moore, Acc. Chem. Res. 2001, 34, 40.
| Crossref | GoogleScholarGoogle Scholar |
(c) D. M. Guldi, Chem. Soc. Rev. 2002, 31, 22.
| Crossref | GoogleScholarGoogle Scholar |
(d) J.‐F. Nierengarten, New J. Chem. 2004, 28, 1177.
| Crossref | GoogleScholarGoogle Scholar |
(e) H. Imahori, J. Phys. Chem. B 2004, 108, 6130.
| Crossref | GoogleScholarGoogle Scholar |
(f) H. Imahori, Org. Biomol. Chem. 2004, 2, 1425.
| Crossref | GoogleScholarGoogle Scholar |
(g) J. N. Clifford, G. Accorsi, F. Cardinali, J.‐F. Nierengarten, N. Armaroli, C. R. Chim. 2006, 9, 1005.
| Crossref | GoogleScholarGoogle Scholar |
(h) D. I. Schuster, K. Li, D. M. Guldi, C. R. Chim. 2006, 9, 892.
| Crossref | GoogleScholarGoogle Scholar |
(i) R. Chitta, F. D’Souza, J. Mater. Chem. 2008, 18, 1440.
| Crossref | GoogleScholarGoogle Scholar |
(j) T. M. Figueira‐Duarte, A. Gégout, J.‐F. Nierengarten, Chem. Commun. 2007, 109.
| Crossref | GoogleScholarGoogle Scholar |
(k) G. Accorsi, N. Armaroli, J. Phys. Chem. C 2010, 114, 1385.
| Crossref | GoogleScholarGoogle Scholar |
[2] For fullerene hexakis‐adducts substituted with up to six peripheral o‐phenylenediamine or 2,9‐dialkyloxyanthracene moieties, see: M. Diekers, C. Luo, D. M. Guldi, A. Hirsch, Chemistry 2002, 8, 979.
[3] (a) (a) For fullerene hexakis‐adducts substituted with porphyrin derivatives, see: X. Camps, E. Dietel, A. Hirsch, S. Pyo, L. Echegoyen, S. Hackbarth, B. Röder, Chemistry 1999, 5, 2362.
(b) D. M. Guldi, C. Luo, M. Prato, A. Troisi, F. Zerbetto, M. Scheloske, E. Dietel, W. Bauer, A. Hirsch, J. Am. Chem. Soc. 2001, 123, 9166.
| Crossref | GoogleScholarGoogle Scholar |
(c) F. Rancan, M. Helmreich, A. Mölich, E. A. Ermilov, N. Jux, B. Röder, A. Hirsch, F. Böhm, Bioconjug. Chem. 2007, 18, 1078.
| Crossref | GoogleScholarGoogle Scholar |
(d) M. Regehly, E. A. Ermilov, M. Helmreich, A. Hirsch, N. Jux, B. Röder, J. Phys. Chem. B 2007, 111, 998.
| Crossref | GoogleScholarGoogle Scholar |
(e) F. Spänig, C. Kovacs, F. Hauke, K. Ohkubo, S. Fukuzumi, D. M. Guldi, A. Hirsch, J. Am. Chem. Soc. 2009, 131, 8180.
| Crossref | GoogleScholarGoogle Scholar |
[4] (a) A. Hirsch, I. Lamparth, T. Grösser, H. R. Karfunkel, J. Am. Chem. Soc. 1994, 116, 9385.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXpsV2hsA%3D%3D&md5=a950d16c5f3af0912859dd6aca1b3c07CAS |
(b) A. Hirsch, O. Vostrowsky, Eur. J. Org. Chem. 2001, 829.
| Crossref | GoogleScholarGoogle Scholar |
[5] (a) H. Li, A. Kitaygorodskiy, R. A. Carino, Y.‐P. Sun, Org. Lett. 2005, 7, 859.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVKqs70%3D&md5=54c1a316791895436608054474cf23e8CAS | 15727459PubMed |
(b) H. Li, S. A. Haque, A. Kitaygorodskiy, M. J. Meziani, M. Torres‐Castillo, Y.‐P. Sun, Org. Lett. 2006, 8, 5641.
| Crossref | GoogleScholarGoogle Scholar |
[6] (a) (a) For reviews on light‐harvesting dendrimers, see: V. Balzani, S. Campagna, G. Denti, A. Juris, S. Serroni, M. Venturi, Acc. Chem. Res. 1998, 31, 26.
(b) V. Balzani, P. Ceroni, A. Juris, M. Venturi, S. Campagna, F. Puntoriero, S. Serroni, Coord. Chem. Rev. 2001, 219–221, 545.
| Crossref | GoogleScholarGoogle Scholar |
(c) A. Adronov, J. M. J. Fréchet, Chem. Commun. 2000, 1701.
| Crossref | GoogleScholarGoogle Scholar |
[7] For examples of light‐harvesting systems using fullerene mono‐adducts as the final energy and/or electron acceptor, see: (a) N. Armaroli, F. Barigelletti, P. Ceroni, J.‐F. Eckert, J.‐F. Nicoud, J.‐F. Nierengarten, Chem. Commun. 2000, 599.
(b) F. Langa, M. J. Gomez‐Escalonilla, E. Diez‐Barra, J. C. Garcia‐Martinez, A. de la Hoz, J. Rodriguez‐Lopez, A. Gonzalez‐Cortes, V. Lopez‐Arza, Tetrahedron Lett. 2001, 42, 3435.
| Crossref | GoogleScholarGoogle Scholar |
(c) J. L. Segura, R. Gomez, N. Martin, C. P. Luo, A. Swartz, D. M. Guldi, Chem. Commun. 2001, 707.
| Crossref | GoogleScholarGoogle Scholar |
(d) M. Schwell, N. K. Wachter, J. H. Rice, J. P. Galaup, S. Leach, R. Taylor, R. V. Bensasson, Chem. Phys. Lett. 2001, 339, 29.
| Crossref | GoogleScholarGoogle Scholar |
(e) G. Accorsi, N. Armaroli, J.‐F. Eckert, J.‐F. Nierengarten, Tetrahedron Lett. 2002, 43, 65.
| Crossref | GoogleScholarGoogle Scholar |
(f) N. Armaroli, G. Accorsi, J. N. Clifford, J.‐F. Eckert, J.‐F. Nierengarten, Chem. Asian J. 2006, 564.
| Crossref | GoogleScholarGoogle Scholar |
(g) L. Pérez, J. C. Garcia‐Martinez, E. Diez‐Barra, P. Atienzar, H. Garcia, J. Rodriguez‐Lopez, F. Langa, Chem. Eur. J. 2006, 12, 5149.
| Crossref | GoogleScholarGoogle Scholar |
(h) J. N. Clifford, A. Gégout, S. Zhang, R. Pereira de Freitas, M. Urbani, M. Holler, P. Ceroni, J.‐F. Nierengarten, N. Armaroli, Eur. J. Org. Chem. 2007, 5899.
| Crossref | GoogleScholarGoogle Scholar |
[8] J. Iehl, R. Pereira de Freitas, B. Delavaux‐Nicot, J.‐F. Nierengarten, Chem. Commun. 2008, 2450.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlvF2ktrw%3D&md5=be22a5e9c0f1631d24ec32a9a8c76291CAS |
[9] (a) J. Iehl, J.‐F. Nierengarten, Chemistry 2009, 15, 7306.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXovVChs7k%3D&md5=46728802eab77e348aa6f4ed862084daCAS | 19579241PubMed |
(b) J. Iehl, J.‐F. Nierengarten, Chem. Commun. 2010, 46, 4160.
| Crossref | GoogleScholarGoogle Scholar |
[10] A similar approach has been also developed in the group of S. Bräse, see: (a) P. Pierrat, S. Vanderheiden, T. Muller, S. Bräse, Chem. Commun. 2009, 1748.
(b) P. Pierrat, C. Réthoré, T. Muller, S. Bräse, Chemistry 2009, 15, 11458.
| Crossref | GoogleScholarGoogle Scholar |
[11] (a) R. Huisgen, Pure Appl. Chem. 1989, 61, 613.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXlsFartbg%3D&md5=51abd999f31ddec612373565faff2e30CAS |
(b) R. Huisgen, W. Szeimies, L. Moebius, Chem. Ber. 1967, 100, 2494.
| Crossref | GoogleScholarGoogle Scholar |
(c) (c) C. W. Tornøe, M. Meldal, Proceedings of the 2nd International and 17th American Peptide Symposium, Peptides: The Waves of the Future 2001, p. 263 (Eds M. Lebl, R. A. Houghten) (Kluwer: San Diego, CA).
(d) V. V. Rostovtsev, L. G. Green, V. V. Fokin, K. B. Sharpless, Angew. Chem. Int. Ed. 2002, 41, 2596.
| Crossref | GoogleScholarGoogle Scholar |
[12] (a) J.‐F. Nierengarten, J. Iehl, V. Oerthel, M. Holler, B. M. Illescas, A. Muñoz, N. Martín, J. Rojo, M. Sánchez‐Navarro, S. Cecioni, S. Vidal, K. Buffet, M. Durka, S. P. Vincent, Chem. Commun. 2010, 46, 3860.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmsFSrsr8%3D&md5=6adcdd6e65cdfb112decdba2ca4c8cd5CAS |
(b) P. Compain, C. Decroocq, J. Iehl, M. Holler, D. Hazelard, T. Mena Barragán, C. Ortiz Mellet, J.‐F. Nierengarten, Angew. Chem. Int. Ed. 2010, 49, 5753.
| Crossref | GoogleScholarGoogle Scholar |
[13] J.‐F. Eckert, J.‐F. Nicoud, J.‐F. Nierengarten, S.‐G. Liu, L. Echegoyen, F. Barigelletti, N. Armaroli, L. Ouali, V. Krasnikov, G. Hadziioannou, J. Am. Chem. Soc. 2000, 122, 7467.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXkvFKrsb4%3D&md5=58570490e9c4d66e49ca0dee540fcea0CAS |
[14] T. M. Figueira‐Duarte, A. Gégout, J. Olivier, F. Cardinali, J.‐F. Nierengarten, Eur. J. Org. Chem. 2009, 3879.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXptlektr4%3D&md5=c453bd8fb6feba4cae1971c51aaab30bCAS |
[15] S. Prathapan, T. E. Johnson, J. S. Lindsey, J. Am. Chem. Soc. 1993, 115, 7519.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXmt1GksbY%3D&md5=dd54813103b896e2bedbb038d2c7d9c2CAS |
[16] J.‐F. Eckert, J.‐F. Nicoud, D. Guillon, J.‐F. Nierengarten, Tetrahedron Lett. 2000, 41, 6411.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXls1WntL0%3D&md5=2071d725730eeb582b74ff48c0132e73CAS |
[17] M. A. Fazio, O. P. Lee, D. I. Schuster, Org. Lett. 2008, 10, 4979.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1emsbnN&md5=03a11b77b6a606f9f521d0816c954fb9CAS | 18847274PubMed |
[18] F. Cardullo, P. Seiler, L. Isaacs, J.‐F. Nierengarten, R. F. Haldimann, F. Diederich, T. Mordasini‐Denti, W. Thiel, C. Boudon, J.‐P. Gisselbrecht, M. Gross, Helv. Chim. Acta 1997, 80, 343.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXisVShtLY%3D&md5=22bd5c3607705db3be5e74fb005de1aeCAS |
[19] R. Pereira de Freitas, J. Iehl, B. Delavaux‐Nicot, J.‐F. Nierengarten, Tetrahedron 2008, 64, 11409.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlOht7%2FK&md5=d6dd8a34dc9b12b9af74f63a06ae6e5bCAS |
[20] G. A. Crosby, J. N. Demas, J. Phys. Chem. 1971, 75, 991.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3MXktFamsL4%3D&md5=694ae6f882b47498c75077780b2c8d5eCAS |
[21] S. R. Meech, D. Phillips, J. Photochem. 1983, 23, 193.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXmt1Wlsbo%3D&md5=406a11d439f8422cb8cd797de20c016bCAS |