Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

Synthesis, Characterization and Anticancer Activity of Porphyrin‐Containing Organometallic Cubes

Nicolas P. E. Barry A , Olivier Zava B , Paul J. Dyson B and Bruno Therrien A C
+ Author Affiliations
- Author Affiliations

A Institute of Chemistry, University of Neuchatel, 51 Avenue de Bellevaux, CH‐2000 Neuchatel, Switzerland.

B Institut des Sciences et Ingénierie Chimique, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH‐1015 Lausanne, Switzerland.

C Corresponding author. Email: bruno.therrien@unine.ch

Australian Journal of Chemistry 63(11) 1529-1537 https://doi.org/10.1071/CH10221
Submitted: 31 May 2010  Accepted: 10 October 2010   Published: 11 November 2010

Abstract

Self‐assembly of 5,10,15,20‐tetra(4‐pyridyl)porphyrin (tpp‐H2) and 5,10,15,20‐tetra(4‐pyridyl)porphyrin‐M(ii) (M = Ni (tpp‐Ni); Zn (tpp‐Zn)) tetradentate panels with the dinuclear p‐cymene ruthenium clips [Ru2(p-cymene)2(C2O4)Cl2] and [Ru2(p-cymene)2(C6H2O4)Cl2] (C2O4 = oxalato; C6H2O4 = 2,5‐dioxydo‐1,4‐benzoquinonato) affords the cationic organometallic cubes: [Ru8(p-cymene)8(tpp‐H2)2(C2O4)4]8+ (1); [Ru8(p-cymene)8(tpp‐Ni)2(C2O4)4]8+ (2); [Ru8(p-cymene)8(tpp‐Zn)2(C2O4)4]8+ (3); [Ru8(p-cymene)8(tpp‐H2)2(C6H2O4)4]8+ (4); [Ru8(p-cymene)8(tpp‐Ni)2(C6H2O4)4]8+ (5); and [Ru8(p-cymene)8(tpp‐Zn)2(C6H2O4)4]8+ (6). In addition, the new dinuclear arene ruthenium 2,5‐dioxydo‐1,4‐benzoquinonato clips [Ru2(indane)2(C6H2O4)Cl2] (7) and [Ru2(nonylbenzene)2(C6H2O4)Cl2] (8) react in methanol with tpp‐H2 in the presence of silver triflate to afford the corresponding cationic cubes [Ru8(indane)8(tpp‐H2)2(C6H2O4)4]8+ (9) and [Ru8(nonylbenzene)8(tpp‐H2)2(C6H2O4)4]8+ (10) respectively. All cationic metalla‐cubes were isolated as triflate salts and characterized by NMR, infrared, electro‐spray mass spectrometry and UV‐visible spectroscopy. Moreover, the formation of unsymmetrical metalla‐cubes built using a mixture of the different porphyrin panels during the self‐assembly of the 2,5‐dioxydo‐1,4‐benzoquinonato metalla‐cubes, [Ru8(p-cymene)8(tpp‐H2)(tpp‐Ni)(C6H2O4)4]8+ (11), [Ru8(p-cymene)8(tpp‐H2)(tpp‐Zn)(C6H2O4)4]8+ (12), and [Ru8(p-cymene)8(tpp‐Ni)(tpp‐Zn)(C6H2O4)4]8+ (13), was studied by electro‐spray mass spectrometry. The cytotoxicities of all metalla‐cubes as well as the mixtures containing the unsymmetrical metalla‐cubes were established on human ovarian A2780 and A2780cisR cancer cell lines. All symmetrical compounds are equally cytotoxic (IC50 =7–15 μM) (IC50 being the drug concentration necessary for 50% inhibition of cell viability) against both A2780 and cisplatin‐resistant A2780cisR cancer cells, with stronger cytotoxicities (IC50 = 2–5 μM) observed for the mixtures containing the unsymmetrical 2,5‐dioxydo‐1,4‐benzoquinonato metalla‐cubes.


References

[1]  Y. Matsumura, H. Maeda, Cancer Res. 1986, 46, 6387.
         | 1:CAS:528:DyaL2sXnvVensA%3D%3D&md5=d53080e6e9e7d411476670e89c31d27aCAS | 2946403PubMed |

[2]  H. Maeda, Adv. Enzyme Regul. 2001, 41, 189.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmtlekt7k%3D&md5=708318d9edad2219cb90090fd42d74adCAS | 11384745PubMed |

[3]  (a) D. F. Baban, L. W. Seymour, Adv. Drug Deliv. Rev. 1998, 34, 109.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmvFWis7w%3D&md5=bd5d3a831e71cc8536d9f92785e3ccc6CAS | 10837673PubMed |
      (b) S. Modi, J. P. Jain, A. J. Domb, N. Kumar, Curr. Pharm. Des. 2006, 12, 4785.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  (a) M. Galanski, M. A. Jakupec, B. K. Keppler, Curr. Med. Chem. 2005, 12, 2075.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXntFCls7o%3D&md5=694cc0396bd7f858cd9c108cf758d22aCAS | 16101495PubMed |
      (b) P. Heffeter, U. Jungwirth, M. Jakupec, C. Hartinger, M. Galanski, L. Elbling, M. Micksche, B. Keppler, W. Berger, Drug Res. Upd. 2008, 11, 1.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  A. Warnecke, I. Fichtner, D. Garmann, U. Jaehde, F. Kratz, Bioconjug. Chem. 2004, 15, 1349.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXovVGqtrg%3D&md5=e65a7802823d74e9a229f310fde2c958CAS | 15546202PubMed |

[6]  (a) A. Levina, A. Mitra, P. A. Lay, Metallomics 2009, 1, 458.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlslWlurg%3D&md5=012cd98530a083f4a282828a92504d9aCAS |
      (b) W. H. Ang, P. J. Dyson, Eur. J. Inorg. Chem. 2006, 4003.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  (a) J. M. Rademaker‐Lakhai, D. Van den Bongard, D. Pluim, J. H. Beijnen, J. H. M. Schellens, Clin. Cancer Res. 2004, 10, 3717.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXksVKntr8%3D&md5=b7d41e1ec6bee8dae47444c94038c659CAS | 15173078PubMed |
      (b) C. G. Hartinger, S. Zorbas‐Seifried, M. A. Jakupec, B. Kynast, H. Zorbas, B. K. Keppler, J. Inorg. Biochem. 2006, 100, 891.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) C. G. Hartinger, M. A. Jakupec, S. Zorbas‐Seifried, M. Groessl, A. Egger, W. Berger, H. Zorbas, P. J. Dyson, B. K. Keppler, Chem. Biodivers. 2008, 5, 2140.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  (a) A. R. Timerbaev, C. G. Hartinger, S. S. Aleksenko, B. K. Keppler, Chem. Rev. 2006, 106, 2224.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjtlOis7c%3D&md5=c8ba220d83d8f7fc0986dd272a1f1886CAS | 16771448PubMed |
      (b) W. H. Ang, E. Daldini, L. Juillerat‐Jeanneret, P. J. Dyson, Inorg. Chem. 2007, 46, 9048.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) M. Groessl, E. Reisner, C. G. Hartinger, R. Eichinger, O. Semenova, A. R. Timerbaev, M. A. Jakupec, V. B. Arion, B. K. Keppler, J. Med. Chem. 2007, 50, 2185.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) M. Groessl, C. G. Hartinger, K. Polec‐Pawlak, M. Jarosz, B. K. Keppler, Electrophoresis 2008, 29, 2224.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) W. Hu, Q. Luo, X. Ma, K. Wu, J. Liu, Y. Chen, S. Xiong, J. Wang, P. J. Sadler, F. Wang, Chemistry 2009, 15, 6586.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) O. Nováková, A. A. Nazarov, C. G. Hartinger, B. K. Keppler, V. Brabec, Biochem. Pharmacol. 2009, 77, 364.
         | Crossref | GoogleScholarGoogle Scholar |
      (g) M. Gras, B. Therrien, G. Süss‐Fink, A. Casini, F. Edafe, P. J. Dyson, J. Organomet. Chem. 2010, 695, 1119.
         | Crossref | GoogleScholarGoogle Scholar |
      (h) M. Groessl, Y. O. Tsybin, C. G. Hartinger, B. K. Keppler, P. J. Dyson, J. Biol. Inorg. Chem. 2010, 15, 677.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  (a) A. F. A. Peacock, P. J. Sadler, Chem. Asian J. 2008, 3, 1890.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVCjt73L&md5=0621e74614eb91c0ecde9e20d1184b06CAS | 18712745PubMed |
      (b) C. G. Hartinger, P. J. Dyson, Chem. Soc. Rev. 2009, 38, 391.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) P. J. Dyson, Chimia 2007, 61, 698.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) G. Süss‐Fink, Dalton Trans. 2010, 1673.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  J. Mattsson, P. Govindaswamy, A. K. Renfrew, P. J. Dyson, P. Štěpnička, G. Süss‐Fink, B. Therrien, Organometallics 2009, 28, 4350.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnsVeiurg%3D&md5=502d2a8397139be0869b3feffbb04403CAS |

[11]  (a) M. G. Mendoza‐Ferri, C. G. Hartinger, R. E. Eichinger, N. Stolyarova, K. Severin, M. A. Jakupec, A. A. Nazarov, B. K. Keppler, Organometallics 2008, 27, 2405.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlsFynsrg%3D&md5=9faef874ee79c7deffe841fb51a7ebb2CAS |
      (b) M. G. Mendoza‐Ferri, C. G. Hartinger, M. A. Mendoza, M. Groessl, A. E. Egger, R. E. Eichinger, J. B. Mangrum, N. P. Farrell, M. Maruszak, P. J. Bednarski, F. Klein, M. A. Jakupec, A. A. Nazarov, K. Severin, B. K. Keppler, J. Med. Chem. 2009, 52, 916.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) O. Nováková, A. A. Nazarov, C. G. Hartinger, B. K. Keppler, V. Brabec, Biochem. Pharmacol. 2009, 77, 364.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  B. Therrien, G. Süss‐Fink, P. Govindaswamy, A. K. Renfrew, P. J. Dyson, Angew. Chem. Int. Ed. 2008, 47, 3773.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmsVKhsr0%3D&md5=49b9ea132b4624a6c60d868983add7f5CAS |

[13]  O. Zava, J. Mattsson, B. Therrien, P. J. Dyson, Chemistry 2010, 16, 1428.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVKjsr0%3D&md5=b30745551903f7e29f4ebf7702033f0aCAS | 20033971PubMed |

[14]  Y.‐F. Han, Y.‐J. Lin, L.‐H. Weng, H. Berke, G.‐X. Jin, Chem. Commun. 2008, 350.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  (a) N. P. E. Barry, M. Austeri, J. Lacour, B. Therrien, Organometallics 2009, 28, 4894.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXptF2kt7s%3D&md5=dcfaf98b606e0052a2a08e8579a518d3CAS |
      (b) N. P. E. Barry, N. H. Abd Karim, R. Vilar, B. Therrien, Dalton Trans. 2009, 10717.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  N. P. E. Barry, P. Govindaswamy, J. Furrer, G. Süss‐Fink, B. Therrien, Inorg. Chem. Commun. 2008, 11, 1300.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1ShsLjI&md5=c9935654371c66e836cc482cf82c29a6CAS |

[17]  (a) P. Govindaswamy, D. Linder, J. Lacour, G. Süss‐Fink, B. Therrien, Chem. Commun. 2006, 4691.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1Srt7vP&md5=94fbc7d140811e1d589af6e6422ee038CAS |
      (b) P. Govindaswamy, D. Linder, J. Lacour, G. Süss‐Fink, B. Therrien, Dalton Trans. 2007, 4457.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) B. Therrien, G. Süss‐Fink, Chimia 2008, 62, 514.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  L. L. Gladkov, K. N. Solovyov, Spectrochim. Acta (A) 1986, 42, 1.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  X.‐Y. Li, R. S. Czernuszewicz, J. R. Kincaid, P. Stein, T. G. Spiro, J. Phys. Chem. 1990, 94, 47.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXksVGhug%3D%3D&md5=2864495eff14d41535f0a28f80efae48CAS |

[20]  H. Yan, G. Süss‐Fink, A. Neels, H. Stoeckli‐Evans, J. Chem. Soc., Dalton Trans. 1997, 4345.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXntlOlsLg%3D&md5=1cda8c0d8daedd38092c7dd488a6b181CAS |

[21]  (a) F. Ricchelli, J. Photochem. Photobiol. B 1995, 29, 109.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXosVOntro%3D&md5=5b083b49832af8c63ca9d52c310f1a59CAS | 7472807PubMed |
      (b) N. P. E. Barry, O. Zava, J. Furrer, P. J. Dyson, B. Therrien, Dalton Trans. 2010, 5272.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  (a) R. A. Zelonka, M. C. Baird, Can. J. Chem. 1972, 50, 3063.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3sXivF2ktA%3D%3D&md5=c86251ec0640b303fbc40540f100d1c7CAS |
      (b) M. A. Bennett, T.‐N. Huang, T. W. Matheson, A. K. Smith, Inorg. Synth. 1982, 21, 74.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  L. Vieille‐Petit, B. Therrien, G. Süss‐Fink, Acta Crystallogr. 2002, E58, m656.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xot1OhsLo%3D&md5=3e7fda16a14c53e06042f5a87bcdb12bCAS |

[24]  P. S. Engel, R. L. Allgren, W.‐K. Chae, R. A. Leckonby, N. A. Marron, J. Org. Chem. 1979, 44, 4233.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXlvVOk&md5=c821854861dc956264820a5a18227b5bCAS |

[25]  B. Therrien, Coord. Chem. Rev. 2009, 253, 493.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVKrsLfK&md5=4d7a3c7942f04e06191f331534206bceCAS |