Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

A Computational Study of the Radical Ring-Opening Polymerization of Diphosphetanes

Michelle L. Coote A B , Mansoor Namazian A and S. Bruce Wild A
+ Author Affiliations
- Author Affiliations

A ARC Centre of Excellence for Free-Radical Chemistry and Biotechnology, Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia.

B Corresponding author. Email: mcoote@rsc.anu.edu.au

Australian Journal of Chemistry 63(8) 1189-1194 https://doi.org/10.1071/CH10085
Submitted: 15 February 2010  Accepted: 29 March 2010   Published: 10 August 2010

Abstract

Radical ring-opening of four-membered 1,3-diphosphetanes appears to be a facile process of similar propensity and mechanism to that of the parent phosphetanes, but the greater kinetic stability of the diphosphetanes could make them more attractive precursors for polymerization.


Acknowledgement

We gratefully acknowledge support from the Australian Research Council and generous allocations of computing time on the National Facility of the National Computational Infrastructure. We also thank Professor Derek Gates for suggesting that we consider diphosphetanes as an alternative to phosphetanes for our polymerization process.


References


[1]   (a) Weil E. D., in Encyclopedia of Polymer Science and Technology, 3rd edn 2004, Vol. 3, pp. 447–474 (Ed. Kroschwitz J. I.) (John Wiley & Sons: New York, NY).
       (b) I. Manners, Angew. Chem. Int. Ed. Engl. 1996, 35,  1602.
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  Note that kp is reported at 493K to be 30000 L mol–1 s–1; extrapolation to 298.15K using their estimated activation energy (36 kJ mol-1) yields an approximate rate coefficient of just 96 L mol–1 s–1.

[20]   For example, the radical stabilization energy of CH2PH2 is 23.5 kJ mol–1; that of CH2CH3 is just 13.5 kJ mol–1. Coote M. L., Lin C. Y., Zipse H., in Carbon-Centered Free Radicals: Structure, Dynamics and Reactivity 2010, pp. 83–104 (Ed. M. D. E. Forbes) (Wiley: NewYork, NY).