Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

Mono- and Dinuclear Copper(ii) and Iron(iii) Complexes of a Tetradentate Bispidine-diacetate Ligand

Peter Comba A B , Lena Daumann A , Julie Lefebvre A , Gerald Linti A , Bodo Martin A , Johannes Straub A and Thomas Zessin A
+ Author Affiliations
- Author Affiliations

A Universität Heidelberg, Anorganisch-Chemisches Institut, INF 270, D-69120 Heidelberg, Germany.

B Corresponding author. Email: peter.comba@aci.uni-heidelberg.de

Australian Journal of Chemistry 62(10) 1238-1245 https://doi.org/10.1071/CH09321
Submitted: 9 June 2009  Accepted: 11 August 2009   Published: 13 October 2009

Abstract

The synthesis of a new tetradentate bispidine ligand (LH2 = 2,2′-(1,5-dimethyl-3,7-diazabicyclo[3.3.1]nonan-3,7-diyl)diacetic acid), containing two tertiary amine and two carboxylic groups, is reported along with the preparation and characterization of the corresponding Cu(ii) and Fe(iii) complexes. The mononuclear [LCu(OH2)]·4H2O (1) complex contains a five-coordinate Cu(ii) centre, which adopt a square pyramidal geometry with the four donor atoms of the ligand (N2O2) occupying the equatorial plane and a water molecule occupying the axial position. An axial electron paramagnetic resonance (EPR) signature is observed for 1 (gx = 2.054, gy = 2.050, gz = 2.234; Ax = 18 × 10–4 cm–1, Ay = 20 × 10–4 cm–1, Az = 188 × 10–4 cm–1) in frozen methanolic solution (0.1 mM). Dimerization of 1 in concentrated solution (10 mM) was observed by EPR spectroscopy (g = 2.24, g = 2.07, A = 195 × 10–4 cm–1, and A = 12 × 10–4 cm–1 for each Cu centre). The structure of the dimeric species [LCu(OH2)]2 (1b) was determined by a combination of molecular mechanics with the simulation of the EPR spectrum (MM-EPR). The dimer has each Cu(ii) centre coordinated by the two amines and one carboxylate of one ligand (L), while the other carboxylate bridges to the second Cu(ii) centre; each coordination sphere is completed by an axial water ligand, with the Cu···Cu distance 5.5 Å (relative orientation from EPR simulation: α = 60°, β = 0°, γ = 25°). The aqueous reaction between the tetradentate ligand (L) and Fe(ii) leads to the formation of an oxo-bridged diiron(iii) complex, [LFe-(μ-O)-FeL] (2), with a Fe–O–Fe angle of 180° (dFe···Fe = 3.516 Å), as revealed by X-ray crystallography. The Mössbauer spectrum of 2 consists of one quadrupole doublet with an isomer shift (δ) of 0.37 mm s–1 and a quadrupole splitting (ΔEQ) of 0.73 mm s–1, which is consistent with S = 5/2 Fe(iii) centres. Variable-temperature magnetic susceptibility measurements show the presence of intramolecular antiferromagnetic interactions between the two Fe(iii) centres, with an exchange coupling constant J of –91(3) cm–1 (H = –2JS1·S2).


Acknowledgements

We thank the German Science Foundation (DFG) and NSERC of Canada (J.L.) for financial support. We thank Philipp Butzug for assistance with single-crystal X-ray crystallography and Dr Eckhard Bill and Bernd Mienert for assistance with Mössbauer spectroscopy.


References


[1]   P. Comba, M. Kerscher, W. Schiek, Prog. Inorg. Chem. 2007, 55,  613.
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
         
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
         
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
         
        | Crossref |  GoogleScholarGoogle Scholar |  open url image1