Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

On the Superhydrophobic Properties of Crystallized Stearic Acid*

Kyle R. Joseph A and Chiara Neto A B
+ Author Affiliations
- Author Affiliations

A School of Chemistry, The University of Sydney, NSW 2006, Australia.

B Corresponding author. Email: c.neto@chem.usyd.edu.au

Australian Journal of Chemistry 63(3) 525-528 https://doi.org/10.1071/CH09292
Submitted: 15 May 2009  Accepted: 2 October 2009   Published: 26 March 2010

Abstract

A surface coating formed by stearic acid (SA) crystals was prepared by repeatedly dipping a silicon substrate into a SA solution and drying it in air. Scanning electron microscopy imaging revealed that the surface roughness of the coating increases with each dip-and-dry cycle. The coating appears as a carpet of hydrophobic ‘blades’, and is superhydrophobic (after 20 dipping cycles advancing contact angle ~160°), even after immersion in water for up to 2 h. This simple method could be applied to large areas, making this an interesting alternative to high-tech surface modification techniques.


References


[1]   G. M. Whitesides, A. D. Stroock, Phys. Today 2001, 54,  42.
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        |  CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  open url image1




* This paper is based on work presented at the Australian Colloid and Interface Symposium, Adelaide, February 2009.