Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Environmentally Friendly Organic Synthesis Using Bismuth Compounds. Bismuth Trifluoromethanesulfonate-Catalyzed Allylation of Dioxolanes

Matthew J. Spafford A , James E. Christensen A , Matthew G. Huddle A , Joshua R. Lacey A and Ram S. Mohan A B
+ Author Affiliations
- Author Affiliations

A Department of Chemistry, Illinois Wesleyan University, Bloomington, IL 61701, USA.

B Corresponding author. Email: rmohan@iwu.edu

Australian Journal of Chemistry 61(6) 419-421 https://doi.org/10.1071/CH08109
Submitted: 17 March 2008  Accepted: 28 April 2008   Published: 19 June 2008

Abstract

A bismuth trifluoromethanesulfonate (triflate)-catalyzed (2.0 mol-%) multicomponent reaction involving the allylation of dioxolanes followed by in situ derivatization with anhydrides to generate highly functionalized esters has been developed under solvent-free conditions. Most reagents used to date for allylation of dioxolanes are highly corrosive and are often required in stoichiometric amounts. In contrast, the use of a relatively non-toxic and non-corrosive bismuth(iii)-based catalyst makes this methodology especially attractive for scale-up.


Acknowledgements

The authors gratefully acknowledge funding from the National Science Foundation for an RUI (Research at Undergraduate Institutions) grant (no. 0650682) awarded to R.S.M.


References


[1]   A. Hosomi, M. Endo, H. Sakurai, Chem. Lett. 1976, 5,  941.
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        |  CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        |  CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  open url image1

[30]   For an example of coordination of Bi(OTf)3 to a nitrogen-containing ligand, see: Kobayashi S., Ogino T., Shimizu H., Ishikawa S., Hamada T., Manabe K., Org. Lett. 2005, 7, 4729. doi:10.1021/OL051965W