Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Synthesis, and Cyclization to Aurones and Flavones, of Alkoxy-Substituted Aryl, Arylalkynyl Ketones

Penelope J. Kerr A , Simon M. Pyke A and A. David Ward A B
+ Author Affiliations
- Author Affiliations

A School of Chemistry and Physics, University of Adelaide, Adelaide SA 5005, Australia.

B Corresponding author. Email: david.ward@adelaide.edu.au

Australian Journal of Chemistry 61(5) 350-358 https://doi.org/10.1071/CH07348
Submitted: 3 October 2007  Accepted: 1 April 2008   Published: 22 May 2008

Abstract

Acylation of 1,3,5-tribenzyloxybenzene with alkoxy-substituted phenylpropioloyl chlorides provides the corresponding aryl alkoxylarylalkynyl ketones in which one of the benzyl groups has been removed. Cyclization of these phenolic ketones using basic reagents (potassium carbonate in acetone is best) provides the corresponding aurone system. When the phenolic group of the alkynyl ketones is protected as the t-butyldimethylsilyl ether followed by cyclization, using 18-crown-6 and potassium fluoride, mixtures of the corresponding aurones and flavones are produced. A by-product from the formation of the ketones is the corresponding β-chlorochalcone, which can also be cyclized to an aurone product using basic conditions. Similarly, the t-butyldimethylsilyl ethers of the HCl adducts can also be cyclized to a mixture of the corresponding aurones and flavones.


References


[1]   W. Tuckmantel, A. P. Kozikowski, L. J. Romanczyk, J. Am. Chem. Soc. 1999, 121,  12073.
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
         
        | Crossref |  GoogleScholarGoogle Scholar |  
         
         
         
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
         
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
         
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  open url image1

[34]   Briggs M. T., Duncan G. L. S., Thornber C. W., Cooper C. R., J. Chem. Res. (M) 1982, 2461.