SEM and BET Methods for Investigating the Structure and Morphology of Co–Ce Catalysts for Production of Light Olefins
Ali A. Mirzaei A C , Maryam Galavy A and Vahid Eslamimanesh BA Department of Chemistry, Faculty of Sciences, University of Sistan and Baluchestan, Zahedan 98135-674, Iran.
B Iran Polymer and Petrochemical Institute, Petrochemical, Tehran 1497713115, Iran.
C Corresponding author. Email: mirzaei@hamoon.usb.ac.ir
Australian Journal of Chemistry 61(2) 144-152 https://doi.org/10.1071/CH07130
Submitted: 29 April 2007 Accepted: 9 September 2007 Published: 11 February 2008
Abstract
Co–Ce catalysts prepared by the coprecipitation method were tested for production of light olefins. The effect of different preparation conditions including the [Co]/[Ce] molar ratio, aging time, calcination conditions, different supports, and loading of optimum support on the structure and catalytic performance of different catalysts were investigated. It was found that catalyst containing 80% Co/20% Ce/15% SiO2, which was aged for 2 h and calcined at 600°C for 6 h, is the optimum modified catalyst for the conversion of synthesis gas to light olefins. Characterization of both precursors and calcined catalysts (before and after the test) was carried out using scanning electron microscopy (SEM) and Brunauer-Emmett-Teller (BET) specific surface area measurements. The morphology of the catalysts was investigated by SEM and the surface areas of these catalysts were studied by BET. It was shown that all of the different preparation variables influenced the morphology and also the specific surface area of the catalyst precursors and calcined catalysts.
Acknowledgements
We gratefully acknowledge the Iranian Petrochemical Research & Technology Co. for helping and supporting the present research.
[1]
[2]
H. Schulz,
Appl. Catal. Gen. 1999, 186, 3.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
| Crossref | GoogleScholarGoogle Scholar |
CAS |
| Crossref | GoogleScholarGoogle Scholar |
CAS |
| Crossref | GoogleScholarGoogle Scholar |
| Crossref | GoogleScholarGoogle Scholar |
CAS |
| Crossref | GoogleScholarGoogle Scholar |
CAS |
| Crossref | GoogleScholarGoogle Scholar |
CAS |
| Crossref | GoogleScholarGoogle Scholar |
| Crossref | GoogleScholarGoogle Scholar |
CAS |
|
CAS |
| Crossref | GoogleScholarGoogle Scholar |
CAS |
|
CAS |
| Crossref | GoogleScholarGoogle Scholar |
CAS |
| Crossref | GoogleScholarGoogle Scholar |
CAS |
| Crossref | GoogleScholarGoogle Scholar |
CAS |
| Crossref | GoogleScholarGoogle Scholar |
CAS |
| Crossref | GoogleScholarGoogle Scholar |
CAS |
| Crossref | GoogleScholarGoogle Scholar |
| Crossref | GoogleScholarGoogle Scholar |
CAS |
| Crossref | GoogleScholarGoogle Scholar |
CAS |
| Crossref | GoogleScholarGoogle Scholar |
CAS |
| Crossref | GoogleScholarGoogle Scholar |
CAS |
| Crossref | GoogleScholarGoogle Scholar |
CAS |
| Crossref | GoogleScholarGoogle Scholar |
CAS |
| Crossref | GoogleScholarGoogle Scholar |
|
CAS |
| Crossref | GoogleScholarGoogle Scholar |
CAS |
| Crossref | GoogleScholarGoogle Scholar |
CAS |
| Crossref | GoogleScholarGoogle Scholar |
CAS |
| Crossref | GoogleScholarGoogle Scholar |
CAS |
| Crossref | GoogleScholarGoogle Scholar |
CAS |
| Crossref | GoogleScholarGoogle Scholar |
CAS |
| Crossref | GoogleScholarGoogle Scholar |
CAS |