Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Ab Initio Study of Structure and Stability of M2Al2 (M = Cu, Ag, and Au) Clusters

FengLi Liu A B , YongFang Zhao A C , XinYing Li A and FengYou Hao A
+ Author Affiliations
- Author Affiliations

A Center for Condensed Matter Science and Technology, Harbin Institute of Technology, Harbin 150080, China.

B College of Physical Science and Technology, Heilongjiang University, Harbin 150080, China.

C Corresponding author. Email: xgjing@hit.edu.cn

Australian Journal of Chemistry 60(3) 184-189 https://doi.org/10.1071/CH06436
Submitted: 16 November 2006  Accepted: 15 January 2007   Published: 2 April 2007

Abstract

Coinage metal aluminium clusters M2Al2 (M = Cu, Ag, and Au) were studied by Hartree–Fock (HF) and second-order Møller–Plesset perturbation theory (MP2) with pseudopotentials. It was found that the butterfly structure with C2v (1A1) symmetry is more stable than the planar structure, and Au2Al2 is the most stable of the title species. The binding energies and the highest occupied molecular orbital and the lowest unoccupied molecular orbital (HOMO–LUMO) gap are evaluated, which indicates that doping clusters M2Al2 are more stable than the pure clusters M4 (M = Cu, Ag, and Au). Electron correlation and relativistic effects stabilize the present species.


Acknowledgments

The authors acknowledge support from the National Natural Science Foundation of China (grant no. 10274015) and Heilongjiang Education Department Foundation of China (grant no. 10551253). Calculations with the Gaussian 98 program were performed on computers of the National Laboratory of Theoretical and Computational Chemistry, Jilin University, China.


References


[1]   G. M. Koretsky, K. P. Kerns, G. C. Nieman, M. B. Knickelbein, S. J. Riley, J. Phys. Chem. A 1999, 103,  1997.
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
         
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
         
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
         
         
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  open url image1