Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Kinetic and Mechanistic Study on the Reactions of [Pd(dien)H2O]2+ and [Pt(dien)H2O]2+ with l-Cysteine and S-Methyl-l-cysteine

Biljana V. Petrović A and Živadin D. Bugarčić A B
+ Author Affiliations
- Author Affiliations

A Department of Chemistry, Faculty of Science, University of Kragujevac, 34000 Kragujevac, Serbia.

B Corresponding author. Email: bugi@kg.ac.yu

Australian Journal of Chemistry 58(7) 544-550 https://doi.org/10.1071/CH05033
Submitted: 21 January 2005  Accepted: 10 May 2005   Published: 21 July 2005

Abstract

The reactions of [Pd(dien)H2O]2+ and [Pt(dien)H2O]2+ (dien = diethylenetriamine or 1,5-diamino-3-azapentane) with l-cysteine and S-methyl-l-cysteine were studied in an aqueous 0.10 M NaClO4 solution using stopped-flow and conventional UV-vis spectrophotometry. The second-order rate constants for the reactions of [Pd(dien)H2O]2+ at pH 1.0 are k1298 = (9.11 ± 0.11) × 102 M−1 s−1 for l-cysteine, and k1298 = (33.79 ± 0.63) × 102 M−1 s−1 for S-methyl-l-cysteine. The second-order rate constants for the reactions of [Pt(dien)H2O]2+ at pH 1.0 with l-cysteine is k1298 = (1.28 ± 0.08) × 10−2 M−1 s−1 and for S-methyl-l-cysteine is k1298 = (3.87 ± 0.02) × 10−2 M−1 s−1. Activation parameters were determined for all reactions, and the negative values of entropy of activation support an associative complex formation mechanism. Substitution reactions were also studied at pH 0.5, 1.0, and 1.5. The rate constants increase with increase in pH. These results are discussed in terms of protolitic equilibrium.


Acknowledgment

The authors thank the Ministry of Science and Technology, Republic of Serbia, for financial support (Project No. 1254).


References


[1]   Cisplatin, Chemistry and Biochemistry of a Leading Anticancer Drug (Ed. B. Lippert) 1999 (Wiley–VCH: Weinheim).

[2]   (a) J. Reedijk, Chem. Rev. 1999, 99,  2499.
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
         
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
         
         
         
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
         
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
         open url image1

[33]   R. M. Smith, A. E. Martel, Critical Stability Constants 1989, Vol. 6, 2nd Suppl., p. 20 (Plenum Press: New York, NY).